Advertisement

G Protein-Coupled Receptor-Mediated Calcium Signaling in Astrocytes

  • Maurizio De PittàEmail author
  • Eshel Ben-Jacob
  • Hugues Berry
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

Astrocytes express a large variety of G protein-coupled receptors (GPCRs) which mediate the transduction of extracellular signals into intracellular calcium responses. This transduction is provided by a complex network of biochemical reactions which mobilizes a wealth of possible calcium-mobilizing second messenger molecules. Inositol 1,4,5-trisphosphate is probably the best known of these molecules whose enzymes for its production and degradation are nonetheless calcium-dependent. We present a biophysical modeling approach based on the assumption of Michaelis–Menten enzyme kinetics, to effectively describe GPCR-mediated astrocytic calcium signals. Our model is then used to study different mechanisms at play in stimulus encoding by shape and frequency of calcium oscillations in astrocytes.

Keywords

Inositol 1, 4, 5-trisphospate metabolism Calcium encoding Signal integration Calcium-induced calcium release threshold Protein kinase C Diacylglycerol 

Abbreviations

2-AG

2-Arachidonoylglycerol

CaMKII

\(\mathrm{{Ca^{2+}}}\) /calmodulin-dependent protein kinase II

CICR

Calcium-induced calcium release

cPKC

Conventional protein kinase C

DAG

Diacylglycerol

DAGK (DAGL)

DAG kinase (lipase)

ER

Endoplasmic reticulum

GPCR

G protein-coupled receptor

GTP (GDP)

Guanosine-5’-triphosphate (guanosine diphosphate)

\(\mathrm{{IP}_3}\) (\(\mathrm{{IP}_3}\) R)

Inositol 1,4,5-trisphosphate (receptor)

\(\mathrm{{IP}_3}\) 3K

\(\mathrm{{IP}_3}\) 3-kinase

IP-5P

Inositol polyphosphate 5-phosphatase

\(\mathrm{{PIP}_2}\)

Phosphatidylinositol 4,5-bisphosphate

PLC\(\upbeta \)  (PLC\(\updelta \))

Phospholipase C\(\upbeta \) (C\(\updelta \))

Notes

Acknowledgements

MDP was supported by an FP7 Marie Skłodowska-Curie International Outgoing Fellowship by the European Commission (Project 331486 “Neuron-Astro-Nets”), and he currently is a Junior Leader Postdoctoral Fellow sponsored by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006). MDP also acknowledge the support by the Basque Government through the BERC 2018–2021 program and by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718.

References

  1. Allen NJ, Barres BA (2009) Glia–more than just brain glue. Nature 457:675–677PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ananthanarayanan B, Stahelin RV, Digman MA, Cho W (2003) Activation mechanisms of conventional protein kinase C isoforms are determined by the ligand affinity and conformational flexibility of their C1 domains. J Biol Chem 278(47):46886–46894PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D (2003) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17:2106–2118PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bekar LK, He W, Nedergaard M (2008) Locus coeruleus \(\alpha \)-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex 18(12):2789–2795PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341(6239):197–205PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A (2017) Three-dimensional Ca\(^{2+}\) imaging advances understanding of astrocyte biology. Science 356:6339CrossRefGoogle Scholar
  9. Brabet I, Mary S, Bockaert J, Pin J (1995) Phenylglycine derivatives discriminate between mGluR1- and mGluR5-mediated responses. Neuropharmacology 34(8):895–903PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brambilla R, Burnstock G, Bonazzi A, Ceruti S, Cattabeni F, Abbracchio MP (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br J Pharmacol 126(3):563–567PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bruner G, Murphy S (1990) ATP-evoked arachidonic acid mobilization in astrocytes is via a P2Y-purinergic receptor. J Neurochem 55(5):1569–1575PubMedCrossRefPubMedCentralGoogle Scholar
  12. Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular stores - the enigma of calcium signalling. Cell Calcium 32(5–6):355–361PubMedCrossRefPubMedCentralGoogle Scholar
  13. Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62:561–581PubMedCrossRefPubMedCentralGoogle Scholar
  14. Carrasco S, Mérida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32(1):27–36PubMedCrossRefPubMedCentralGoogle Scholar
  15. Changeux J, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308(5727):1424–1428PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C, Sur M (2012) Nucleus basalis enabled stimulus specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci USA 109(41):E2832–E2841PubMedCrossRefPubMedCentralGoogle Scholar
  17. Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501PubMedCrossRefPubMedCentralGoogle Scholar
  18. Clewley R (2012) Hybrid models and biological model reduction with PyDSTool. PLoS Comput Biol 8(8):e1002628PubMedPubMedCentralCrossRefGoogle Scholar
  19. Codazzi F, Teruel MN, Meyer T (2001) Control of astrocyte Ca\(^{2+}\) oscillations and waves by oscillating translocation and activation of protein kinase C. Curr Biol 11(14):1089–1097PubMedCrossRefPubMedCentralGoogle Scholar
  20. Communi D, Dewaste V, Erneux C (1999) Calcium-calmodulin-dependent protein kinase II and protein kinase C-mediated phosphorylation and activation of D-myo-inositol 1,4,5-trisphosphate 3-kinase B in astrocytes. J Biol Chem 274:14734–14742PubMedCrossRefPubMedCentralGoogle Scholar
  21. Communi D, Gevaert K, Demol H, Vandekerckhove J, Erneux C (2001) A novel receptor-mediated regulation mechanism of type I inositol polyphosphate 5-phosphatase by calcium/calmodulin-dependent protein kinase II phosphorylation. J Biol Chem 276(42):38738–38747PubMedPubMedCentralCrossRefGoogle Scholar
  22. Communi D, Vanweyenberg V, Erneux C (1995) Molecular study and regulation of D-myo-inositol 1,4,5-trisphopshate 3-kinase. Cell Signal 7(7):643–650PubMedCrossRefPubMedCentralGoogle Scholar
  23. Communi D, Vanweyenberg V, Erneux C (1997) d-myo-inositol 1,4,5-trisphosphate 3-kinase A is activated by receptor activation through a calcium:calmodulin-dependent protein kinase II phosphorylation mechanism. EMBO J 16(8):1943–1952PubMedPubMedCentralCrossRefGoogle Scholar
  24. Connolly T, Bansal V, Bross T, Irvine R, Majerus P (1987) The metabolism of tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J Biol Chem 262(5):2146–2149PubMedPubMedCentralGoogle Scholar
  25. Cristóvão-Ferreira S, Navarro G, Brugarolas M, Pérez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casadó V, Franco R, Sebastião AM (2013) A\(_1\)R-A\(_{2\rm {A}}\)R heteromers coupled to G\(_s\) and G\(_{i/0}\) proteins modulate GABA transport into astrocytes. Purinergic Signalling 9(3):433–449PubMedPubMedCentralCrossRefGoogle Scholar
  26. Csordàs G, Thomas AP, Hajnóczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18(1):96–108PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cui Y, Prokin I, Xu H, Delord B, Genet S, Venance L, Berry H (2016) Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. elife 5:e13185Google Scholar
  28. Daggett L, Sacaan A, Akong M, Rao S, Hess S, Liaw C, Urrutia A, Jachec C, Ellis S, Dreessen J (1995) Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5. Neuropharmacology 34(8):871–886PubMedCrossRefPubMedCentralGoogle Scholar
  29. De Konick P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca\(^{2+}\) oscillations. Science 279:227–230CrossRefGoogle Scholar
  30. De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009) Glutamate-dependent intracellular calcium and IP\(_{3}\) oscillating and pulsating dynamics in astrocytes. J Biol Phys 35:383–411PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Pittà M, Volman V, Berry H, Parpura V, Liaudet N, Volterra A, Ben-Jacob E (2013) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comp Neurosci 6:98Google Scholar
  32. Di Castro M, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca\(^{2+}\) detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284CrossRefGoogle Scholar
  33. Ding F, ODonnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) \(\alpha _1\)-Adrenergic receptors mediate coordinated Ca\(^{2+}\) signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6):387–394PubMedCrossRefPubMedCentralGoogle Scholar
  34. Doengi M, Hirnet D, Coulon P, Pape H-C, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca\(^{2+}\) signaling in developing olfactory bulb astrocytes. Proc National Acad Sci 106(41):17570–17575CrossRefGoogle Scholar
  35. Dominguez CL, Floyd DH, Xiao A, Mullins GR, Kefas BA, Xin W, Yacur MN, Abounader R, Lee JK, Wilson GM, Harris TE, Purow BW (2013) Diacylglycerol kinase \(\alpha \) is a critical signaling node and novel therapeutic target in glioblastoma and other cancers. Cancer Discov 3(7):782–797PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca\(^{2+}\) oscillations. Cell Calcium 22(5):321–331PubMedCrossRefPubMedCentralGoogle Scholar
  37. Erneux C, Govaerts C, Communi D, Pesesse X (1998) The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta 1436(1–2):185–189PubMedCrossRefGoogle Scholar
  38. Essen L, Perisic O, Cheung R, Katan M, Williams RL (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase C. Nature 380:595–602PubMedCrossRefGoogle Scholar
  39. Essen L, Perisic O, Lunch DE, Katan M, Williams RL (1997) A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-\(\updelta \)1. Biochemistry (Mosc) 37(10):4568–4680Google Scholar
  40. Fam S, Gallagher C, Salter M (2000) P2Y\(_{1}\) purinoceptor-mediated Ca\(^{2+}\) signaling and Ca\(^{2+}\) wave propagation in dorsal spinal cord astrocytes. J Neurosci20(8):2800–2808Google Scholar
  41. Fisher SK (1995) Homologous and heterologous regulation of receptor-stimulated phosphoinosited hydrolysis. Eur J Pharmacol 288:231–250PubMedCrossRefGoogle Scholar
  42. Gallo V, Ghiani A (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharm Sci 21:252–258PubMedCrossRefGoogle Scholar
  43. Giaume C, Marin P, Cordier J, Glowinski J, Premont J (1991) Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc Nat Acad Sci 88(13):5577–5581PubMedCrossRefGoogle Scholar
  44. Golovina VA, Blaustein MP (1997) Spatially and functionally distinct Ca\(^{2+}\) stores in sarcoplasmic and endoplasmic reticulum. Science 275:1643–1648PubMedCrossRefGoogle Scholar
  45. Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7(4)PubMedCrossRefGoogle Scholar
  46. Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12:943–956PubMedCrossRefGoogle Scholar
  47. Hardy A, Conley P, Luo J, Benovic J, Poole A, Mundell S (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105(9):3552–3560PubMedCrossRefGoogle Scholar
  48. Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63(12):2133–2151PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hermosura M, Takeuchi H, Fleig A, Riley A, Potter B, Hirata M, Penner R (2000) InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature 408(6813):735–740PubMedCrossRefGoogle Scholar
  50. Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859CrossRefGoogle Scholar
  51. Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakisphopshate pathway-demonstration of Ins(1,4,5)P\(_{3}\) 3-kinase activity in animal tissues. Nature 320:631–634PubMedCrossRefGoogle Scholar
  52. Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2(5):327–338PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jennings A, Tyurikova O, Bard L, Zheng K, Semyanov A, Henneberger C, Rusakov DA (2017) Dopamine elevates and lowers astroglial Ca\(^{2+}\) through distinct pathways depending on local synaptic circuitry. Glia 65(3):447–459PubMedCrossRefGoogle Scholar
  54. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10(3):331–339PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692PubMedCrossRefGoogle Scholar
  56. Kang M, Othmer H (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19(3):037116CrossRefGoogle Scholar
  57. Kanoh H, Kondoh H, Ono T (1983) Diacylglycerol kinase from pig brain. Purification and phospholipid dependencies. J Biol Chem 258(3):1767–1774PubMedGoogle Scholar
  58. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471CrossRefGoogle Scholar
  59. Keener J, Sneyd J (2008) Mathematical physiology: I:  Cellular physiology vol 1. 2nd edn. SpringerGoogle Scholar
  60. Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK (2000) Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase II\(\upalpha \) and truncated CaM kinase II\(\upalpha \) reveal a unique organization for its structural core and functional domains. J Biol Chem 275(19):14354–14359Google Scholar
  61. Lemon G, Gibson WG, Bennett MR (2003) Metabotropic receptor activation, desensitization and sequestration - I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation. J Theor Biol 223(1):93–111PubMedCrossRefGoogle Scholar
  62. Li Y, Rinzel J (1994) Equations for InsP\(_{3}\) receptor-mediated [Ca\(^{2+}\)]\(_{i}\) oscillations derived from a detailed kinetic model: A Hodgkin-Huxley like formalism. J Theor Biol 166:461–473PubMedPubMedCentralCrossRefGoogle Scholar
  63. Losi G, Mariotti L, Carmignoto G (2014) GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Phil Trans Royal Soc B: Biol Sci 369(1654):20130609CrossRefGoogle Scholar
  64. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22(7):368–376PubMedCrossRefGoogle Scholar
  65. Mariotti L, Losi G, Sessolo M, Marcon I, Carmignoto G (2016) The inhibitory neurotransmitter GABA evokes long-lasting Ca\(^{2+}\) oscillations in cortical astrocytes. Glia 64(3):363–373PubMedCrossRefGoogle Scholar
  66. Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349(6249):730–734PubMedCrossRefGoogle Scholar
  67. Mérida I, Ávila-Flores A, Merino E (2008) Diacylglycerol kinases: at the hub of cell signalling. Biochem J 409(1):1–18PubMedCrossRefGoogle Scholar
  68. Min R, Nevian T (2012) Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 15(5):746–753PubMedCrossRefGoogle Scholar
  69. Mishra J, Bhalla US (2002) Simulations of inositol phosphate metabolism and its interaction with Ins P\(_{3}\)-mediated calcium release. Biophys J 83:1298–1316PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mosior M, Epand RM (1994) Characterization of the calcium-binding site that regulates association of protein kinase C with phospholipid bilayers. J Biol Chem 269(19):13798–13805PubMedPubMedCentralGoogle Scholar
  71. Nakahara K, Okada M, Nakanishi S (1997) The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. J Neurochem 69(4):1467–1475PubMedCrossRefPubMedCentralGoogle Scholar
  72. Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57(6):883–893PubMedCrossRefGoogle Scholar
  73. Navarrete M, Perea G, de Sevilla D, Gómez-Gonzalo M, Núñez A, Martín E, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):e1001259PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496PubMedCrossRefPubMedCentralGoogle Scholar
  75. Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95:307–318PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ochocka A-M, Pawelczyk T (2003) Isozymes delta of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell. Acta Biochim Pol 50(4):1097–1110PubMedGoogle Scholar
  77. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996PubMedCrossRefGoogle Scholar
  78. Panatier A, Vallée J, Haber M, Murai K, Lacaille J, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798CrossRefGoogle Scholar
  79. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97(15):8629–8634PubMedPubMedCentralCrossRefGoogle Scholar
  80. Parri HR, Crunelli V (2003) The role of Ca\(^{2+}\) in the generation of spontaneous astrocytic Ca\(^{2+}\) oscillations. Neuroscience 120(4):979–992PubMedCrossRefPubMedCentralGoogle Scholar
  81. Pawelczyk T, Matecki A (1997) Structural requirements of phospholipase C \(\updelta 1\) for regulation by spermine, sphingosine and sphingomyelin. Eur J Biochem 248:459–465Google Scholar
  82. Perea G, Araque A (2005a) Synaptic regulation of the astrocyte calcium signal. J Neur Transm 112:127–135PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pivneva T, Haas B, Reyes-Haro D, Laube G, Veh R, Nolte C, Skibo G, Kettenmann H (2008) Store-operated Ca\(^{2+}\) entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium 43(6):591–601PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ramos-Franco J, Bare D, Caenepeel S, Nani A, Fill M, Mignery G (2000) Single-channel function of recombinant type 2 inositol 1,4,5-trisphosphate receptor. Biophys J 79(3):1388–1399PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80(4):1291–1335PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rhee SG, Bae YS (1997) Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 272:15045–15048PubMedCrossRefPubMedCentralGoogle Scholar
  87. Rosenberger TA, Farooqui AA, Horrocks LA (2007) Bovine brain diacylglycerol lipase: substrate specificity and activation by cyclicAMP-dependent protein kinase. Lipids 42(3):187–195PubMedCrossRefPubMedCentralGoogle Scholar
  88. Ryu SH, Kin U, Wahl MI, Brown Ab, Carpenter G, Huang K, Rhee SG (1990) Feedback regulation of phospholipase C-\(\upbeta \) by protein kinase C. J Biol Chem 265(29):17941–17945Google Scholar
  89. Sakane F, Yamada K, Imai S-I, Kanoh H (1991) Porcine 80-kDa diacylglycerol kinase is a calcium-binding and calcium/phospholipid-dependent enzyme and undergoes calcium-dependent translocation. J Biol Chem 266(11):7096–7100PubMedPubMedCentralGoogle Scholar
  90. Santello M, Volterra A (2012) TNF\(\upalpha \) in synaptic function: switching gears. Trends Neurosci 35(10):638–647Google Scholar
  91. Serrano A, Haddjeri N, Lacaille J, Robitaille R (2006) GABAergic network activation of glial cells underlies heterosynaptic depression. J Neurosci 26(20):5370–5382PubMedCrossRefPubMedCentralGoogle Scholar
  92. Shigetomi E, Kracun S, Sovfroniew MS, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13(6):759–766PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shinohara T, Michikawa T, Enomoto M, Goto J, Iwai M, Matsu-ura T, Yamazaki H, Miyamoto A, Suzuki A, Mikoshiba K (2011) Mechanistic basis of bell-shaped dependence of inositol 1,4,5-trisphosphate receptor gating on cytosolic calcium. Proc Natl Acad Sci USA 108(37):15486–15491PubMedCrossRefPubMedCentralGoogle Scholar
  94. Shinomura T, Asaoka Y, Oka M, Yoshida K, Nishizuka Y (1991) Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: its possible implications. Proc Natl Acad Sci USA 88:5149–5153PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sim SS, Kim JW, Rhee SG (1990) Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem 265:10367–10372Google Scholar
  96. Sims CE, Allbritton NL (1998) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis. J Biol Chem 273(7):4052–4058PubMedPubMedCentralCrossRefGoogle Scholar
  97. Skeel RD (1986) Construction of variable-stepsize multistep formulas. Mathem Comput 47(176):503–510CrossRefGoogle Scholar
  98. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35PubMedCrossRefPubMedCentralGoogle Scholar
  99. Stryer L (1999) Biochemistry, 4th edn. W. H. Freeman and Company, New YorkGoogle Scholar
  100. Suh P-G, Park J-I, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41(6):415–34PubMedCrossRefPubMedCentralGoogle Scholar
  101. Sun W, McConnell E, Pare J-F, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339(6116):197–200PubMedPubMedCentralCrossRefGoogle Scholar
  102. Suzuki Y, Moriyoshi E, Tsuchiya D, Jingami H (2004) Negative cooperativity of glutamate binding in the dimeric metabotropic glutamate receptor subtype I. J Biol Chem 279(34):35526–35534PubMedCrossRefPubMedCentralGoogle Scholar
  103. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31(49):18155–18165PubMedCrossRefPubMedCentralGoogle Scholar
  104. Thiel G, Czernik AJ, Gorelick F, Nairn AC, Greengard P (1988) Ca\(^{2+}\)/calmodulin-dependent protein kinase II: Identification of threonine-286 as the autophosphorylation site in the \(\upalpha \) subunit associated with the generation of Ca\(^{2+}\)-independent activity. Proc Natl Acad Sci USA 85:6337–6341Google Scholar
  105. Togashi S, Takazawa K, Endo T, Erneux C, Onaya T (1997) Structural identification of the myo-inositol 1,4,5-trisphosphate-binding domain in rat brain inositol 1,4,5-trisphopshate 3-kinase. Biochem J 326:221–225PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vaarmann A, Gandhi S, Abramov AY (2010) Dopamine induces Ca\(^{2+}\) signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285(32):25018–25023Google Scholar
  107. van der Bend RL, de Widt J, Hilkmann H, Van Blitterswijk WJ (1994) Diacylglycerol kinase in receptor-stimulated cells converts its substrate in a topologically restricted manner. J Biol Chem 269(6):4098–4102PubMedPubMedCentralGoogle Scholar
  108. Verjans B, Lecocq R, Moreau C, Erneux C (1992) Purification of bovine brain inositol-1,4,5-trisphosphate 5-phosphatase. Eur J Biochem 204:1083–1087PubMedCrossRefPubMedCentralGoogle Scholar
  109. Violin JD, Crombie AL, Soergel DG, Lark MW (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35(7):308–316PubMedCrossRefPubMedCentralGoogle Scholar
  110. Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca\(^{2+}\) signalling: an unexpected complexity. Nat Rev Neurosci 15:327–334CrossRefPubMedPubMedCentralGoogle Scholar
  111. Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24(37):8068–8074PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca\(^{2+}\) signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823PubMedCrossRefGoogle Scholar
  113. Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11:835–841PubMedCrossRefPubMedCentralGoogle Scholar
  114. Yamada K, Sakane F, Matsushima N, Kanoh H (1997) EF-hand motifs of \(\upalpha \), \(\upbeta \) and \(\upgamma \) isoforms of diacylglycerol kinase bind calcium with different affinities and conformational changes. Biochem J 321(1):59–64Google Scholar
  115. Zheng K, Bard L, Reynolds JP, King C, Jensen TP, Gourine AV, Rusakov DA (2015) Time-resolved imaging reveals heterogeneous landscapes of nanomolar Ca\(^{2+}\) in neurons and astroglia. Neuron 88(2):277–288PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zorec R, Araque A, Carmignoto G, Haydon P, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca\(^{2+}\) as a signaling route. ASN Neuro 4(2):e00080PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maurizio De Pittà
    • 1
    Email author
  • Eshel Ben-Jacob
    • 2
  • Hugues Berry
    • 3
  1. 1.BCAM – Basque Center for Applied MathematicsBilbaoSpain
  2. 2.School of Physics and AstronomyTel Aviv UniversityRamat AvivIsrael
  3. 3.EPI BEAGLE, INRIA Rhône-AlpesVilleurbanneFrance

Personalised recommendations