Intracellular Calcium Dynamics: Biophysical and Simplified Models

  • Yulia TimofeevaEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


Calcium ions are an important second messenger in living cells. A fundamental approach for studying calcium signalling is the combination of state-of-the-art experimental techniques with spatiotemporal mathematical models of calcium regulation. Extensive modelling work on calcium oscillations and waves consists of a variety of theoretical/computational methods and models of different complexity. Some models can be assigned to a category of biologically realistic, detailed models, analysis of which is restricted to numerical methods. Other models can be placed in a category of simplified, minimal models susceptible to mathematical analysis. In this chapter, we provide an overview of a number of models for intracellular calcium dynamics belonging to both categories. Both types of models complement each other nicely and are vital for a better understanding of the complex mechanisms involved in cellular calcium signalling.


  1. Berridge MJ (2005) Unlocking the secrets of cell signalling. Ann Rev Physiol 67:1–21CrossRefGoogle Scholar
  2. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochimica et Biophysica Acta 1793:933–940CrossRefGoogle Scholar
  3. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRefGoogle Scholar
  4. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529CrossRefGoogle Scholar
  5. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P\(_3\)-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754CrossRefGoogle Scholar
  6. Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–294CrossRefGoogle Scholar
  7. Bootman MD, Berridge MJ, Putney JW, Roderick HL (eds) (2011) Calcium signaling. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  8. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99(3):1115–1122CrossRefGoogle Scholar
  9. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545CrossRefGoogle Scholar
  10. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058CrossRefGoogle Scholar
  11. Combettes L, Dupont G, Parys JB (2004) New mechanisms and functions in Ca\(^{2+}\) signalling. Biol Cell 96:1–2CrossRefGoogle Scholar
  12. Coombes S (2001) The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca\(^{2+}\) release. Bull Math Biol 63:1–20CrossRefGoogle Scholar
  13. Coombes S, Timofeeva Y (2003) Sparks and waves in a stochastic fire-diffuse-fire model of calcium release. Phys Rev E 68(021):915Google Scholar
  14. Coombes S, Hinch R, Timofeeva Y (2004) Receptors, sparks and waves in a fire-diffuse-fire framework for calcium release. Prog Biophys Mol Biol 85:197–216CrossRefGoogle Scholar
  15. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473CrossRefGoogle Scholar
  16. Dupont G, Tordjmann T, Clair C, Swillens S, Claret M, Combettes L (2000) Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes. FASEB J 14(2):279–289CrossRefGoogle Scholar
  17. Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245CrossRefGoogle Scholar
  18. Dupont G, Falcke M, Kirk V, Sneyd J (2016) Models of calcium signalling. Springer, Interdisciplinary Applied MathematicsGoogle Scholar
  19. Endo M, Tanaka M, Ogawa Y (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228:34–36CrossRefGoogle Scholar
  20. Ermentrout GB (2002) Simulating, analysing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, PhiladelphiaGoogle Scholar
  21. Falcke M (2003) Deterministic and stochastic models of intracellular Ca\(^{2+}\) waves. New J Phys 5:96.1–96.28Google Scholar
  22. Falcke M (2004) Reading the patterns in living cells - the physics of Ca\(^{2+}\) signaling. Adv Phys 53(3):255–440CrossRefGoogle Scholar
  23. Falcke M, Tsimring L, Levine H (2000) Stochastic spreading of intracellular Ca\(^{2+}\) release. Phys Rev E 62:2636–2643CrossRefGoogle Scholar
  24. FitzHugh R (1961) Impulses and physiological states in models of nerve membrane. Biophys J 1:445–466CrossRefGoogle Scholar
  25. Goldbeter A (1996) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. Cambridge University Press, CambridgeGoogle Scholar
  26. Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca\(^{2+}\) oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87:1461–1465CrossRefGoogle Scholar
  27. Goldbeter A, Gérard C, Gonze D, Leloup J, Dupont G (2012) Systems biology of cellular rhythms. FEBS Lett 586:2955–2965CrossRefGoogle Scholar
  28. Harris J, Timofeeva Y (2010) Intercellular calcium waves in the fire-diffuse-fire framework: green’s function for gap-junctional coupling. Phys Rev E 82(051):910Google Scholar
  29. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRefGoogle Scholar
  30. Izu LT, Wier WG, Balke CW (2001) Evolution of cardiac waves from stochastic calcium sparks. Biophys J 80:103–120CrossRefGoogle Scholar
  31. Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14:736–745CrossRefGoogle Scholar
  32. Kaneko T, Tanaka H, Oyamada M, Kawata S, Takamatsu T (2000) Three distinct types of Ca\(^{2+}\) waves in Langendorff-perfused rat heart revealed by real-time confocal microscopy. Circ Res 86:1093–1099CrossRefGoogle Scholar
  33. Keizer JE, Smith GD (1998) Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys Chem 72:87–100CrossRefGoogle Scholar
  34. Keizer JE, Smith GD, Dawson SP, Pearson J (1998) Saltatory propagation of Ca\(^{2+}\) waves by Ca\(^{2+}\) sparks. Biophys J 75:595–600CrossRefGoogle Scholar
  35. Krebs J, Michalak M (eds) (2007) Calcium: a matter of life or death, New comprehensive biochemistry, vol 41. Elsevier ScienceGoogle Scholar
  36. Kupferman R, Mitra PP, Hohenberg PC, Wang SSH (1997) Analytical calculation of intracellular calcium wave characteristics. Biophys J 72:2430–2444CrossRefGoogle Scholar
  37. Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252:123–126CrossRefGoogle Scholar
  38. Leybaert L, Sanderson MJ (2012) Intercellular Ca\(^{2+}\) waves: mechanisms and function. Physiol Rev 92:1359–1392CrossRefGoogle Scholar
  39. Li YX, Rinzel J (1994) Equations for InsP\(_3\) receptor-mediated [Ca\(^{2+}\)] oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. J Theor Biol 166:461–473CrossRefGoogle Scholar
  40. Lipp P, Niggli E (1993) Microscopic spiral waves reveal positive feedback in subcellular calcium signaling. Biophys J 65:2272–2276CrossRefGoogle Scholar
  41. Marchant JS, Parker I (2001) Role of elementary Ca\(^{2+}\) puffs in generating repetitive Ca\(^{2+}\) oscillations. EMBO J 20:65–76CrossRefGoogle Scholar
  42. Mikoshiba K (2007) IP\(_3\) receptor/Ca\(^{2+}\) channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446CrossRefGoogle Scholar
  43. Miyazaki S (2006) Thirty years of calcium signals at fertilization. Semin Cell Dev Biol 17:233–243CrossRefGoogle Scholar
  44. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulation nerve axon. Proc IRE 50:2061–2070CrossRefGoogle Scholar
  45. Paemeleire K, Martin PEM, Coleman SL, Fogarty KE, Carrington WA, Leybaert L, Tuft RA, Evans WH, Sanderson MJ (2000) Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43, 32, or 26. Mol Biol Cell 11(5):1815–1827CrossRefGoogle Scholar
  46. Parekh AB (2011) Decoding cytosolic Ca\(^{2+}\) oscillations. Trends Biochem Sci 36(2):78–87CrossRefGoogle Scholar
  47. Parker I, Ivorra I (1990) Inhibition by Ca\(^{2+}\) of inositol trisphosphate-mediated Ca\(^{2+}\) liberation: a possible mechanism for oscillatory release of Ca\(^{2+}\). Proc Natl Acad Sci USA 87:260–264CrossRefGoogle Scholar
  48. Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38:161–169CrossRefGoogle Scholar
  49. Rizzuto R, Pozzan T (2006) Microdomains of intracellular ca\(^{2+}\): molecular determinants and functional consequences. Physiol Rev 86:369–408CrossRefGoogle Scholar
  50. Røttingen JA, Iversen JG (2000) Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol Scand 169:203–219CrossRefGoogle Scholar
  51. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725CrossRefGoogle Scholar
  52. Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355CrossRefGoogle Scholar
  53. Slepchenko BM, Schaff JC, Choi YS (2000) Numerical approach to fast reactions in reaction-diffusion systems: application to buffered calcium waves in bistable models. J Comput Phys 162:186–218CrossRefGoogle Scholar
  54. Sneyd J, Falcke M (2005) Models of the inositol trisphosphate receptor. Prog Biophys Mol Biol 89:207–245CrossRefGoogle Scholar
  55. Sneyd J, Tsaneva-Atanasova K (2003) Understanding calcium dynamics: experiments and theory, Springer, chap Modeling calcium waves, pp 179–199Google Scholar
  56. Sneyd J, Dale P, Duffy A (1998) Traveling waves in buffered systems: applications to calcium waves. SIAM J Appl Math 58:1178–1192CrossRefGoogle Scholar
  57. Sneyd J, LeBeau A, Yule D (2000) Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis. Phys D 145:158–179CrossRefGoogle Scholar
  58. Stokes DL, Green NM (2003) Structure and function of the calcium pump. Ann Rev Biophys Biomol Struct 32:445–468CrossRefGoogle Scholar
  59. Takamatsu T, Wier WG (1990) Calcium waves in mammalian heart: quantification of origin, magnitude, waveform, and velocity. FASEB J 4:1519–1525CrossRefGoogle Scholar
  60. Thomas AP, Renard DC, Rooney TA (1991) Spatial and temporal organization of calcium signalling in hepatocytes. Cell Calcium 12:111–126CrossRefGoogle Scholar
  61. Thul R, Coombes S, Roderick HL, Bootman MD (2012) Subcellular calcium dynamics in a whole-cell model of an atrial myocyte. Proc Natl Acad Sci USA 109(6):2150–2155CrossRefGoogle Scholar
  62. Timofeeva Y, Coombes S (2003) Wave bifurcation and propagation failure in a model of calcium release. J Math Biol 47:249–269CrossRefGoogle Scholar
  63. Toma I, Bansal E, Meer EJ, Kang JJ, Vargas SL, Peti-Peterdi J (2008) Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells. Am J Physiol - Regul Integr Comp Physiol 294(6):R1769–R1776CrossRefGoogle Scholar
  64. Wagner J, Keizer J (1994) Effects of rapid buffers on Ca\(^{2+}\) diffusion and Ca\(^{2+}\) oscillations. Biophys J 67:447–456CrossRefGoogle Scholar
  65. Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72(9):2001–2007CrossRefGoogle Scholar
  66. Young GD, Keizer J (1992) A single pool IP\(_3\)-receptor based model for agonist-stimulated Ca\(^{2+}\) oscillations. Proc Natl Acad Sci USA 89:9895–9899CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Centre for Complexity ScienceUniversity of WarwickCoventryUK

Personalised recommendations