Computational Models of Astrocytes and Astrocyte–Neuron Interactions: Characterization, Reproducibility, and Future Perspectives

  • Tiina Manninen
  • Riikka Havela
  • Marja-Leena LinneEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


Astrocytes have been shown to participate in a variety of brain functions. These include homeostasis, metabolism, neuronal survival in pathological circumstances, and neurovascular coupling. Since astrocytes extend their processes into close proximity to synapses, it has also been proposed that they take active roles in synaptic transmission, learning, and memory. The complexity of dynamic interactions on both molecular and cellular levels of neurons and astrocytes is overwhelming. This underlines the demand for detailed, integrative computational models for advancing our understanding of the functional contribution of astrocytes in the nervous system. This study presents the state of the art in computational models for astrocytes and astrocyte–neuron interactions. First, we characterized the models based on the type of biological entities they described. We then studied several aspects of the models in detail, including reproducibility. We discovered that several publications lack crucial details in how the models were presented, preventing successful reproduction of the results. Graphical illustrations of these models were misleading, mathematical equations incorrect, or selected model components not adequately justified. Moreover, in some cases, it was impossible, after several trials, to reproduce the simulated results presented in the original publications. In order to facilitate reproducible science, we propose some criteria that computational glioscience models should meet. To the best of our knowledge, this study is one of the first to report the detailed categorization and evaluation of astrocyte-neuron models.


Astrocyte Astrocyte network Astrocyte–neuron interaction Calcium Computational model Reproducibility Simulation 



The research leading to these results has received partial funding from the European Union Seventh Framework Programme (FP7) under grant agreement No. 604102 (HBP), European Union’s Horizon 2020 research and innovation programme under grant agreement No. 720270, and Academy of Finland (decision Nos. 297893, 315795, and 320072). The authors wish to thank Tampere University of Technology Graduate School, Emil Aaltonen Foundation, The Finnish Concordia Fund, and Ulla Tuominen Foundation for support for R.H. This work was submitted on October 25th, 2015, and accepted on January 5th, 2016.


  1. Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22(21):9430–9444PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agulhon C, Sun M-Y, Murphy T, Myers T, Lauderdale K, Fiacco TA (2012) Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front Pharmacol 3:139PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allam SL, Ghaderi VS, Bouteiller J-MC, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci 6:70PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allegrini P, Fronzoni L, Pirino D (2009) The influence of the astrocyte field on neuronal dynamics and synchronization. J Biol Phys 35(4):413–423PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amiri M, Bahrami F, Janahmadi M (2011a) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139CrossRefGoogle Scholar
  7. Amiri M, Montaseri G, Bahrami F (2011b) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166PubMedCrossRefPubMedCentralGoogle Scholar
  8. Amiri M, Bahrami F, Janahmadi M (2012a) Functional contributions of astrocytes in synchronization of a neuronal network model. J Theor Biol 292:60–70PubMedCrossRefPubMedCentralGoogle Scholar
  9. Amiri M, Bahrami F, Janahmadi M (2012b) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299PubMedCrossRefPubMedCentralGoogle Scholar
  10. Amiri M, Bahrami F, Janahmadi M (2012c) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180PubMedCrossRefPubMedCentralGoogle Scholar
  11. Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013a) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34(3):489–504PubMedPubMedCentralCrossRefGoogle Scholar
  12. Amiri M, Montaseri G, Bahrami F (2013b) A phase plane analysis of neuron-astrocyte interactions. Neural Netw 44:157–165PubMedCrossRefPubMedCentralGoogle Scholar
  13. Amiri M, Amiri M, Nazari S, Faez K (2016) A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network. J Theor Biol 410:107–118PubMedCrossRefPubMedCentralGoogle Scholar
  14. Atri A, Amundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J 65(4):1727–1739PubMedPubMedCentralCrossRefGoogle Scholar
  15. Aubert A, Pellerin L, Magistretti PJ, Costalat R (2007) A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl Acad Sci U S A 104(10):4188–4193PubMedPubMedCentralCrossRefGoogle Scholar
  16. Barrack DS, Thul R, Owen MR (2014) Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development. J Theor Biol 347:17–32PubMedPubMedCentralCrossRefGoogle Scholar
  17. Barrack DS, Thul R, Owen MR (2015) Modelling cell cycle synchronisation in networks of coupled radial glial cells. J Theor Biol 377:85–97PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bellinger S (2005) Modeling calcium wave oscillations in astrocytes. Neurocomputing 65–66:843–850CrossRefGoogle Scholar
  19. Bennett MR, Farnell L, Gibson WG (2005) A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J 89(4):2235–2250PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bennett MR, Buljan V, Farnell L, Gibson WG (2006) Purinergic junctional transmission and propagation of calcium waves in spinal cord astrocyte networks. Biophys J 91(9):3560–3571PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bennett MR, Farnell L, Gibson WG (2008a) Origins of blood volume change due to glutamatergic synaptic activity at astrocytes abutting on arteriolar smooth muscle cells. J Theor Biol 250(1):172–185PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bennett MR, Farnell L, Gibson WG (2008b) Origins of the BOLD changes due to synaptic activity at astrocytes abutting arteriolar smooth muscle. J Theor Biol 252(1):123–130PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bennett MR, Farnell L, Gibson WG (2008c) A quantitative model of cortical spreading depression due to purinergic and gap-junction transmission in astrocyte networks. Biophys J 95(12):5648–5660PubMedPubMedCentralCrossRefGoogle Scholar
  24. Calvetti D, Cheng Y, Somersalo E (2015) A spatially distributed computational model of brain cellular metabolism. J Theor Biol 376:48–65PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cannon RC, Gewaltig M-O, Gleeson P, Bhalla US, Cornelis H, Hines ML, Howell FW, Muller E, Stiles JR, Wils S, De Schutter E (2007) Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics 5(2):127–138PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62(6):561–581CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chander BS, Chakravarthy VS (2012) A computational model of neuro-glio-vascular loop interactions. PLoS ONE 7(11):e48802PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crook SM, Davison AP, Plesser HE (2013) Learning from the past: approaches for reproducibility in computational neuroscience. In: Bower JM (ed) 20 years of computational neuroscience. Springer, New York, pp 73–102CrossRefGoogle Scholar
  29. De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast. 2016:7607924PubMedPubMedCentralCrossRefGoogle Scholar
  30. De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009a) Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J Biol Phys 35(4):383–411, erratum 36:221–222 (2010)Google Scholar
  31. De Pittà M, Volman V, Levine H, Ben-Jacob E (2009b) Multimodal encoding in a simplified model of intracellular calcium signaling. Cogn. Process. 10(Suppl 1):S55–S70PubMedCrossRefPubMedCentralGoogle Scholar
  32. De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput. Biol. 7(12):e1002293PubMedPubMedCentralCrossRefGoogle Scholar
  33. De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front. Comput. Neurosci. 6:98PubMedPubMedCentralCrossRefGoogle Scholar
  34. De Pittà M, Brunel N, Volterra A (2016) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323:43–61PubMedCrossRefPubMedCentralGoogle Scholar
  35. De Schutter E (2008) Why are computational neuroscience and systems biology so separate. PLoS Comput. Biol. 4(5):e1000078PubMedPubMedCentralCrossRefGoogle Scholar
  36. De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration. Proc Natl Acad Sci U S A 89(20):9895–9899PubMedPubMedCentralCrossRefGoogle Scholar
  37. Di Garbo A (2009) Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35(4):361–382PubMedPubMedCentralCrossRefGoogle Scholar
  38. Di Garbo A, Barbi M, Chillemi S, Alloisio S, Nobile M (2007) Calcium signalling in astrocytes and modulation of neural activity. Biosystems 89(1–3):74–83PubMedCrossRefPubMedCentralGoogle Scholar
  39. Diekman CO, Fall CP, Lechleiter JD, Terman D (2013) Modeling the neuroprotective role of enhanced astrocyte mitochondrial metabolism during stroke. Biophys J 104(8):1752–1763PubMedPubMedCentralCrossRefGoogle Scholar
  40. DiNuzzo M, Gili T, Maraviglia B, Giove F (2011) Modeling the contribution of neuron-astrocyte cross talk to slow blood oxygenation level-dependent signal oscillations. J Neurophysiol 106(6):3010–3018PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dronne M-A, Boissel J-P, Grenier E (2006) A mathematical model of ion movements in grey matter during a stroke. J Theor Biol 240(4):599–615PubMedCrossRefPubMedCentralGoogle Scholar
  42. Dupont G, Croisier H (2010) Spatiotemporal organization of Ca\(^{2+}\) dynamics: a modeling-based approach. HFSP J 4(2):43–51PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dupont G, Goldbeter A (1993) One-pool model for Ca\(^{2+}\) oscillations involving Ca\(^{2+}\) and inositol 1, 4, 5-trisphosphate as co-agonists for Ca\(^{2+}\) release. Cell Calcium 14(4):311–322CrossRefGoogle Scholar
  44. Dupont G, Lokenye EFL, Challiss RAJ (2011) A model for Ca\(^{2+}\) oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie 93(12):2132–2138PubMedPubMedCentralCrossRefGoogle Scholar
  45. Edwards JR, Gibson WG (2010) A model for Ca\(^{2+}\) waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. J Theor Biol 263(1):45–58PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fellin T, Ellenbogen JM, De Pittà M, Ben-Jacob E, Halassa MM (2012) Astrocyte regulation of sleep circuits: experimental and modeling perspectives. Front Comput Neurosci 6:65PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fink CC, Slepchenko B, Loew LM (1999) Determination of time-dependent inositol-1, 4, 5-trisphosphate concentrations during calcium release in a smooth muscle cell. Biophys J 77(1):617–628PubMedPubMedCentralCrossRefGoogle Scholar
  48. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24(1):50–64PubMedCrossRefPubMedCentralGoogle Scholar
  51. Goldberg M, De Pittà M, Volman V, Berry H, Ben-Jacob E (2010) Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6(8):e1000909PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gordleeva SY, Stasenko SV, Semyanov AV, Dityatev AE, Kazantsev VB (2012) Bi-directional astrocytic regulation of neuronal activity within a network. Front Comput Neurosci 6:92PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goto I, Kinoshita S, Natsume K (2004) The model of glutamate-induced intracellular Ca\(^{2+}\) oscillation and intercellular Ca\(^{2+}\) wave in brain astrocytes. Neurocomputing 58–60:461–467CrossRefGoogle Scholar
  54. Guthrie PB, Knappenberger J, Segal M, Bennett MVL, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528PubMedPubMedCentralCrossRefGoogle Scholar
  55. Haghiri S, Ahmadi A, Saif M (2016) VLSI implementable neuron-astrocyte control mechanism. Neurocomputing 214:280–296CrossRefGoogle Scholar
  56. Haghiri S, Ahmadi A, Saif M (2017) Complete neuron-astrocyte interaction model: digital multiplierless design and networking mechanism. IEEE Trans Biomed Circuits Syst 11(1):117–127PubMedCrossRefPubMedCentralGoogle Scholar
  57. Halnes G, Østby I, Pettersen KH, Omholt SW, Einevoll GT (2013) Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS Comput Biol 9(12):e1003386PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hayati M, Nouri M, Haghiri S, Abbott D (2016) A digital realization of astrocyte and neural glial interactions. IEEE Trans Biomed Circuits Syst 10(2):518–529PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17(1):7–11PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hituri K, Linne M-L (2013) Comparison of models for IP\(_3\) receptor kinetics using stochastic simulations. PLoS ONE 8(4):e59618PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedPubMedCentralCrossRefGoogle Scholar
  62. Höfer T, Politi A, Heinrich R (2001) Intercellular Ca\(^{2+}\) wave propagation through gap-junctional Ca\(^{2+}\) diffusion: a theoretical study. Biophys J 80(1):75–87PubMedPubMedCentralCrossRefGoogle Scholar
  63. Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859CrossRefGoogle Scholar
  64. Houart G, Dupont G, Goldbeter A (1999) Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1, 4, 5-trisphosphate signal in a model for intracellular Ca\(^{2+}\) oscillations. Bull Math Biol 61(3):507–530PubMedCrossRefPubMedCentralGoogle Scholar
  65. Iacobas DA, Suadicani SO, Spray DC, Scemes E (2006) A stochastic two-dimensional model of intercellular Ca\(^{2+}\) wave spread in glia. Biophys J 90(1):24–41PubMedPubMedCentralCrossRefGoogle Scholar
  66. Izhikevich EM (2007) Dynamical systems in neuroscience. The MIT Press, CambridgeGoogle Scholar
  67. Jha BK, Jha A (2015) Two dimensional finite volume model to study the effect of ER on cytosolic calcium distribution in astrocytes. Procedia Comput Sci 46:1285–1293CrossRefGoogle Scholar
  68. Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B (2010) Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30(12):1982–1986PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jolivet R, Coggan JS, Allaman I, Magistretti PJ (2015) Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput Biol 11(2):e1004036PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jung P, Cornell-Bell A, Madden KS, Moss F (1998) Noise-induced spiral waves in astrocyte syncytia show evidence of self-organized criticality. J Neurophysiol 79(2):1098–1101PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kang M, Othmer HG (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19(3):037116PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kazantsev VB (2009) Spontaneous calcium signals induced by gap junctions in a network model of astrocytes. Phys Rev E 79(1):010901CrossRefGoogle Scholar
  73. Keener J, Sneyd J (1998) Mathematical physiology. Springer, BerlinGoogle Scholar
  74. Keener J, Sneyd J (2009) Mathematical physiology: I: cellular physiology. Springer, BerlinCrossRefGoogle Scholar
  75. Komin N, Moein M, Ellisman MH, Skupin A (2015) Multiscale modeling indicates that temperature dependent [Ca\(^{2+}\)]\(_i\) spiking in astrocytes is quantitatively consistent with modulated SERCA activity. Neural Plast 2015:683490PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kuriu T, Kakimoto Y, Araki O (2015) Computational simulation: astrocyte-induced depolarization of neighboring neurons mediates synchronous UP states in a neural network. J Biol Phys 41:377–390PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lallouette J, De Pittà M, Ben-Jacob E, Berry H (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front Comput Neurosci 8:45PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lavrentovich M, Hemkin S (2008) A mathematical model of spontaneous calcium (II) oscillations in astrocytes. J Theor Biol 251(4):553–560, corrigendum 260:332 (2009)Google Scholar
  79. Lemon G, Gibson WG, Bennett MR (2003) Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1, 4, 5-trisphosphate dynamics following receptor activation. J Theor Biol 223(1):93–111CrossRefGoogle Scholar
  80. Li Y-X, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca\(^{2+}\)]\(_i\) oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166(4):461–473PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li B, Chen S, Zeng S, Luo Q, Li P (2012) Modeling the contributions of Ca\(^{2+}\) flows to spontaneous Ca\(^{2+}\) oscillations and cortical spreading depression-triggered Ca\(^{2+}\) waves in astrocyte networks. PLoS ONE 7(10):e48534PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li J, Tang J, Ma J, Du M, Wang R, Wu Y (2016a) Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Sci Rep 6:32343PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li J, Wang R, Du M, Tang J, Wu Y (2016b) Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block. Chaos Solitons Fractals 91:702–708CrossRefGoogle Scholar
  84. Li J-J, Du M-M, Wang R, Lei J-Z, Wu Y (2016c) Astrocytic gliotransmitter: diffusion dynamics and induction of information processing on tripartite synapses. Int J Bifurcat Chaos 26(8):1650138CrossRefGoogle Scholar
  85. Linne M-L, Jalonen TO (2014) Astrocyte-neuron interactions: from experimental research-based models to translational medicine. Prog Mol Biol Transl Sci 123:191–217PubMedCrossRefPubMedCentralGoogle Scholar
  86. Liu Y, Li C (2013) Stochastic resonance in feedforward-loop neuronal network motifs in astrocyte field. J Theor Biol 335:265–275PubMedCrossRefPubMedCentralGoogle Scholar
  87. Liu J, Harkin J, Maguire LP, McDaid LJ, Wade JJ, Martin G (2016) Scalable networks-on-chip interconnected architecture for astrocyte-neuron networks. IEEE Trans Circuits Syst I Reg Papers 63(12):2290–2303CrossRefGoogle Scholar
  88. López-Caamal F, Oyarzún DA, Middleton RH, García MR (2014) Spatial quantification of cytosolic Ca\(^{2+}\) accumulation in nonexcitable cells: an analytical study. IEEE/ACM Trans Comput Biol Bioinform 11(3):592–603PubMedCrossRefPubMedCentralGoogle Scholar
  89. MacDonald CL, Silva GA (2013) A positive feedback cell signaling nucleation model of astrocyte dynamics. Front Neuroeng 6:4PubMedPubMedCentralCrossRefGoogle Scholar
  90. MacDonald CL, Yu D, Buibas M, Silva GA (2008) Diffusion modeling of ATP signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves. Front Neuroeng 1:1PubMedPubMedCentralCrossRefGoogle Scholar
  91. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901PubMedCrossRefPubMedCentralGoogle Scholar
  92. Manninen T, Hituri K, Hellgren Kotaleski J, Blackwell KT, Linne M-L (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152PubMedPubMedCentralCrossRefGoogle Scholar
  93. Manninen T, Hituri K, Toivari E, Linne M-L (2011) Modeling signal transduction leading to synaptic plasticity: evaluation and comparison of five models. EURASIP J Bioinf Syst Biol 2011:797250CrossRefGoogle Scholar
  94. Manninen T, Havela R, Linne M-L (2017) Reproducibility and comparability of computational models for astrocyte calcium excitability. Front Neuroinform 11:11PubMedPubMedCentralCrossRefGoogle Scholar
  95. Manninen T, Aćimović J, Havela R, Teppola H, Linne M-L (2018a) Challenges in reproducibility, replicability, and comparability of computational models and tools for neuronal and glial networks, cells, and subcellular structures. Front Neuroinform 12:20Google Scholar
  96. Manninen T, Havela R, Linne M-L (2018b) Computational models for calcium-mediated astrocyte functions. Front Comput Neurosci 12:14Google Scholar
  97. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492PubMedCrossRefPubMedCentralGoogle Scholar
  98. Matrosov VV, Kazantsev VB (2011) Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes. Chaos 21(2):023103PubMedPubMedCentralCrossRefGoogle Scholar
  99. Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003) ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics 1(1):135–139PubMedPubMedCentralCrossRefGoogle Scholar
  100. Min R, Santello M, Nevian T (2012) The computational power of astrocyte mediated synaptic plasticity. Front Comput Neurosci 6:93PubMedPubMedCentralCrossRefGoogle Scholar
  101. Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213PubMedPubMedCentralCrossRefGoogle Scholar
  102. Nadkarni S, Jung P (2003) Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys Rev Lett 91(26):268101PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nadkarni S, Jung P (2004) Dressed neurons: modeling neural-glial interactions. Phys Biol 1(1):35PubMedCrossRefPubMedCentralGoogle Scholar
  104. Nadkarni S, Jung P (2005) Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. J Integr Neurosci 4(2):207–226PubMedCrossRefPubMedCentralGoogle Scholar
  105. Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  106. Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):e1000088PubMedPubMedCentralCrossRefGoogle Scholar
  107. Naeem M, McDaid LJ, Harkin J, Wade JJ, Marsland J (2015) On the role of astroglial syncytia in self-repairing spiking neural networks. IEEE Trans Neural Netw Learn Syst 26(10):2370–2380PubMedCrossRefPubMedCentralGoogle Scholar
  108. Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68(1):113–126PubMedPubMedCentralCrossRefGoogle Scholar
  109. Navarrete M, Perea G, de Sevilla DF, Gómez-Gonzalo M, Núñez A, Martín ED, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):e1001259PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nazari S, Faez K, Karami E, Amiri M (2014) A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26PubMedCrossRefPubMedCentralGoogle Scholar
  111. Nazari S, Amiri M, Faez K, Amiri M (2015a) Multiplier-less digital implementation of neuron-astrocyte signalling on FPGA. Neurocomputing 164:281–292CrossRefGoogle Scholar
  112. Nazari S, Faez K, Amiri M, Karami E (2015b) A digital implementation of neuron-astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90PubMedCrossRefPubMedCentralGoogle Scholar
  113. Nazari S, Faez K, Amiri M, Karami E (2015c) A novel digital implementation of neuron-astrocyte interactions. J Comput Electron 14(1):227–239CrossRefGoogle Scholar
  114. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275(5301):844–847PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nimmerjahn A (2009) Astrocytes going live: advances and challenges. J Physiol 587(8):1639–1647PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nordlie E, Gewaltig M-O, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456PubMedPubMedCentralCrossRefGoogle Scholar
  117. Occhipinti R, Somersalo E, Calvetti D (2009) Astrocytes as the glucose shunt for glutamatergic neurons at high activity: an in silico study. J Neurophysiol 101(5):2528–2538PubMedCrossRefPubMedCentralGoogle Scholar
  118. Occhipinti R, Somersalo E, Calvetti D (2010) Energetics of inhibition: insights with a computational model of the human GABAergic neuron-astrocyte cellular complex. J Cereb Blood Flow Metab 30(11):1834–1846PubMedPubMedCentralCrossRefGoogle Scholar
  119. Oku Y, Fresemann J, Miwakeichi F, Hülsmann S (2016) Respiratory calcium fluctuations in low-frequency oscillating astrocytes in the pre-Bötzinger complex. Respir Physiol Neurobiol 226:11–17PubMedCrossRefPubMedCentralGoogle Scholar
  120. Olufsen MS, Whittington MA, Camperi M, Kopell N (2003) New roles for the gamma rhythm: population tuning and preprocessing for the beta rhythm. J Comput Neurosci 14(1):33–54PubMedCrossRefPubMedCentralGoogle Scholar
  121. Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2012) Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. J Comput Neurosci 32(1):147–165PubMedCrossRefGoogle Scholar
  122. Panatier A, Vallée J, Haber M, Murai KK, Lacaille J-C, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146(5):785–798CrossRefGoogle Scholar
  123. Parpura V (2004) Glutamate-mediated bi-directional signaling between neurons and astrocytes. In: Hatton GI, Parpura V (eds) Glial \(\Leftrightarrow \) neuronal signaling. Springer, Berlin, pp 365–395CrossRefGoogle Scholar
  124. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629PubMedPubMedCentralCrossRefGoogle Scholar
  126. Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841):1083–1086PubMedPubMedCentralCrossRefGoogle Scholar
  127. Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca\(^{2+}\) waves and spreading depression in the mouse neocortex. J Neurosci 23(30):9888–9896PubMedCrossRefPubMedCentralGoogle Scholar
  128. Pettinen A, Aho T, Smolander O-P, Manninen T, Saarinen A, Taattola K-L, Yli-Harja O, Linne M-L (2005) Simulation tools for biochemical networks: evaluation of performance and usability. Bioinformatics 21(3):357–363PubMedCrossRefPubMedCentralGoogle Scholar
  129. Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1(1):39–60PubMedCrossRefPubMedCentralGoogle Scholar
  130. Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83PubMedCrossRefPubMedCentralGoogle Scholar
  131. Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, Pazos A, Araque A (2011) Artificial astrocytes improve neural network performance. PLoS ONE 6(4):e19109PubMedPubMedCentralCrossRefGoogle Scholar
  132. Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural-glial interaction. BioSystems 89(1):84–91PubMedCrossRefPubMedCentralGoogle Scholar
  133. Postnov DE, Ryazanova LS, Brazhe NA, Brazhe AR, Maximov GV, Mosekilde E, Sosnovtseva OV (2008) Giant glial cell: new insight through mechanism-based modeling. J Biol Phys 34(3–4):441–457PubMedPubMedCentralCrossRefGoogle Scholar
  134. Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35(4):425–445PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ranjbar M, Amiri M (2015) An analog astrocyte-neuron interaction circuit for neuromorphic applications. J Comput Electron 14(3):694–706CrossRefGoogle Scholar
  136. Ranjbar M, Amiri M (2016) Analog implementation of neuron-astrocyte interaction in tripartite synapse. J Comput Electron 15(1):311–323CrossRefGoogle Scholar
  137. Reato D, Cammarota M, Parra LC, Carmignoto G (2012) Computational model of neuron-astrocyte interactions during focal seizure generation. Front Comput Neurosci 6:81PubMedPubMedCentralCrossRefGoogle Scholar
  138. Riera J, Hatanaka R, Ozaki T, Kawashima R (2011a) Modeling the spontaneous Ca\(^{2+}\) oscillations in astrocytes: inconsistencies and usefulness. J Integr Neurosci 10(4):439–473PubMedPubMedCentralCrossRefGoogle Scholar
  139. Riera J, Hatanaka R, Uchida T, Ozaki T, Kawashima R (2011b) Quantifying the uncertainty of spontaneous Ca\(^{2+}\) oscillations in astrocytes: particulars of Alzheimer’s disease. Biophys J 101(3):554–564PubMedPubMedCentralCrossRefGoogle Scholar
  140. Roth BJ, Yagodin SV, Holtzclaw L, Russell JT (1995) A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium 17(1):53–64PubMedCrossRefPubMedCentralGoogle Scholar
  141. Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13(6):759–766PubMedPubMedCentralCrossRefGoogle Scholar
  142. Shuai J-W, Jung P (2002) Stochastic properties of Ca\(^{2+}\) release of inositol 1, 4, 5-trisphosphate receptor clusters. Biophys J 83(1):87–97PubMedPubMedCentralCrossRefGoogle Scholar
  143. Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98(1):61–74PubMedCrossRefPubMedCentralGoogle Scholar
  144. Skupin A, Kettenmann H, Falcke M (2010) Calcium signals driven by single channel noise. PLoS Comput Biol 6(8):e1000870PubMedPubMedCentralCrossRefGoogle Scholar
  145. Soleimani H, Bavandpour M, Ahmadi A, Abbott D (2015) Digital implementation of a biological astrocyte model and its application. IEEE Trans Neural Netw Learn Syst 26(1):127–139PubMedCrossRefPubMedCentralGoogle Scholar
  146. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25(2):349–365PubMedCrossRefPubMedCentralGoogle Scholar
  147. Stamatakis M, Mantzaris NV (2006) Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 241(3):649–668PubMedPubMedCentralCrossRefGoogle Scholar
  148. Suffczynski P, Kalitzin S, Lopes Da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484PubMedCrossRefPubMedCentralGoogle Scholar
  149. Tang J, Luo J-M, Ma J (2013) Information transmission in a neuron-astrocyte coupled model. PLoS ONE 8(11):e80324PubMedPubMedCentralCrossRefGoogle Scholar
  150. Tang J, Liu T-B, Ma J, Luo J-M, Yang X-Q (2016) Effect of calcium channel noise in astrocytes on neuronal transmission. Commun Nonlinear Sci Numer Simul 32:262–272CrossRefGoogle Scholar
  151. Tewari S, Majumdar K (2012a) A mathematical model for astrocytes mediated LTP at single hippocampal synapses. J Comput Neurosci 33(2):341–370PubMedCrossRefPubMedCentralGoogle Scholar
  152. Tewari SG, Majumdar KK (2012b) A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J Biol Phys 38(3):465–496PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tewari S, Parpura V (2013) A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework. Front Comput Neurosci 7:145PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tewari S, Parpura V (2014) Data and model tango to aid the understanding of astrocyte-neuron signaling. Front Comput Neurosci 8:3PubMedPubMedCentralCrossRefGoogle Scholar
  155. Toivari E, Manninen T, Nahata AK, Jalonen TO, Linne M-L (2011) Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: Fura-2AM measurements and stochastic model simulations. PLoS ONE 6(3):e17914PubMedPubMedCentralCrossRefGoogle Scholar
  156. Topalidou M, Leblois A, Boraud T, Rougier NP (2015) A long journey into reproducible computational neuroscience. Front Comput Neurosci 9:30PubMedPubMedCentralCrossRefGoogle Scholar
  157. Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66(2):635–650PubMedCrossRefPubMedCentralGoogle Scholar
  158. Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94(2):719–723PubMedPubMedCentralCrossRefGoogle Scholar
  159. Ullah G, Jung P, Cornell-Bell AH (2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39(3):197–208CrossRefGoogle Scholar
  160. Ullah G, Cressman JR Jr, Barreto E, Schiff SJ (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. J Comput Neurosci 26(2):171–183PubMedCrossRefPubMedCentralGoogle Scholar
  161. Valenza G, Pioggia G, Armato A, Ferro M, Scilingo EP, De Rossi D (2011) A neuron-astrocyte transistor-like model for neuromorphic dressed neurons. Neural Netw 24(7):679–685PubMedCrossRefPubMedCentralGoogle Scholar
  162. Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19(2):303–326PubMedPubMedCentralCrossRefGoogle Scholar
  163. Volman V, Bazhenov M, Sejnowski TJ (2012) Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci 6:58PubMedPubMedCentralCrossRefGoogle Scholar
  164. Volman V, Bazhenov M, Sejnowski TJ (2013) Divide and conquer: functional segregation of synaptic inputs by astrocytic microdomains could alleviate paroxysmal activity following brain trauma. PLoS Comput Biol 9(1):e1002856PubMedPubMedCentralCrossRefGoogle Scholar
  165. Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca\(^{2+}\) signalling: an unexpected complexity. Nat Rev Neurosci 15(5):327–335PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JAS (2011) Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS ONE 6(12):e29445PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wade J, McDaid L, Harkin J, Crunelli V, Kelso S (2012) Self-repair in a bidirectionally coupled astrocyte-neuron (AN) system based on retrograde signaling. Front Comput Neurosci 6:76PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wade J, McDaid L, Harkin J, Crunelli V, Kelso S (2013) Biophysically based computational models of astrocyte neuron coupling and their functional significance. Front Comput Neurosci 7:44PubMedPubMedCentralCrossRefGoogle Scholar
  169. Wallach G, Lallouette J, Herzog N, De Pittà M, Jacob EB, Berry H, Hanein Y (2014) Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 10(12):e1003964PubMedPubMedCentralCrossRefGoogle Scholar
  170. Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca\(^{2+}\) signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823PubMedCrossRefPubMedCentralGoogle Scholar
  171. Wei F, Shuai J (2011) Intercellular calcium waves in glial cells with bistable dynamics. Phys Biol 8(2):026009PubMedCrossRefPubMedCentralGoogle Scholar
  172. Yang Y, Yeo CK (2015) Conceptual network model from sensory neurons to astrocytes of the human nervous system. IEEE Trans Biomed Eng 62(7):1843–1852PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zeng S, Li B, Zeng S, Chen S (2009) Simulation of spontaneous Ca\(^{2+}\) oscillations in astrocytes mediated by voltage-gated calcium channels. Biophys J 97(9):2429–2437PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tiina Manninen
    • 1
  • Riikka Havela
    • 1
  • Marja-Leena Linne
    • 1
    Email author
  1. 1.Computational Neuroscience Group, Faculty of Biomedical Sciences and Engineering, BioMediTech InstituteTampere University of TechnologyTampereFinland

Personalised recommendations