Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

  • Geir HalnesEmail author
  • Klas H. Pettersen
  • Leiv Øyehaug
  • Marie E. Rognes
  • Gaute T. Einevoll
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


We review modelling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchhoff–Nernst–Planck (KNP) scheme for modelling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus describe key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.


Tissue modelling Ion concentration dynamics Electrodiffusion Neuron–glia interactions Potassium buffering 


  1. Amedee T, Robert A, Coles J (1997) Potassium homeostasis and glial energy metabolism. Glia : 599–630Google Scholar
  2. Amiji MM, Sandmann BJ (2002) Applied physical pharmacy. McGraw-HillGoogle Scholar
  3. Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC (2003) Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Nat Acad Sci United States Am 100:13615–13620CrossRefGoogle Scholar
  4. Baber K, Mosthaf K, Flemisch B, Helmig R, Müthing S (2012) Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA J Appl Math 77:887–909CrossRefGoogle Scholar
  5. Bai M, Elsworth D, Roegiers JC (1993) Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour Res 29:1621–1633CrossRefGoogle Scholar
  6. Bear MF, Paradiso MA, Connors BW (2001) Neuroscience: Exploring the brain, 2nd edn. Lippincott Williams and Wilkins, BaltimoreGoogle Scholar
  7. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164CrossRefGoogle Scholar
  8. Cattaneo L, Zunino P (2013) Computational models for coupling tissue perfusion and microcirculation. MOX Report 25/2013Google Scholar
  9. Chen KC, Nicholson C (2000) Spatial buffering of potassium ions in brain extracellular space. Biophys J 78:2776–97CrossRefGoogle Scholar
  10. Coles J, Orkand R (1986) Free Concentrations of Na, K, and Cl in the Retina of the Honeybee Drone: Stimulus induced redistribution and Homeostasisa. Ann New 481: 303–317CrossRefGoogle Scholar
  11. Cordingley G, Somjen G (1978) The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex. Brain Res 151:291–306CrossRefGoogle Scholar
  12. Cressman J, Ullah G, Ziburkus J, Schiff S, Barreto E (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. J Comput NeurosciGoogle Scholar
  13. De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRefGoogle Scholar
  14. Destexhe A, Bal T, McCormick DA, Sejnowski TJ, Sejnowski J et al (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049–2070CrossRefGoogle Scholar
  15. Devor A, Boas D, Einevoll G, Buxton R, Dale A (2012) Neuronal basis of non-invasive functional imaging: from bold fmri to microscopic neurovascular dynamics. In: Gruetter R (ed) Choi IY. Neural Metabolism In Vivo, Springer, pp 433–500Google Scholar
  16. Dietzel I, Heinemann U, Lux H (1989) Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat. Glia 2:25–44CrossRefGoogle Scholar
  17. Einevoll G, Kayser C, Logothetis N, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785CrossRefGoogle Scholar
  18. Enger R, Gundersen GA, Haj-Yasein NN, Eilert-Olsen M, Thoren AE (2012) Molecular scaffolds underpinning macroglial polarization: an analysis of retinal Müller cells and brain astrocytes in mouse. Glia 60:2018–2026CrossRefGoogle Scholar
  19. Enger R, Tang W, Vindedal GF, Jensen V, Johannes Helm P, et al. (2015) Dynamics of ionic shifts in cortical spreading depression. Cerebral cortex. New York 1991, pp 1–8CrossRefGoogle Scholar
  20. Florence G, Dahlem MA, Almeida ACG, Bassani JWM, Kurths J (2009) The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study. J Theor Biol 258:219–228CrossRefGoogle Scholar
  21. Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibres of loligo. J Physiol 131:341–76CrossRefGoogle Scholar
  22. Furman CS, Gorelick-Feldman DA, Davidson KGV, Yasumura T, Neely JD (2003) Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Nat Acad Sci United States Am 100:13609–13614CrossRefGoogle Scholar
  23. Gardner-Medwin A (1983) Analysis of potassium dynamics in mammalian brain tissue. J Physiol: 393–426CrossRefGoogle Scholar
  24. Goriely A, Geers MG, Holzapfel GA, Jayamohan J, Jrusalem A, et al (2015) Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol: 1–35Google Scholar
  25. Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+, K(+)-ATPase to focal epilepsy: a brief review. Epilepsy Res 12:141–149CrossRefGoogle Scholar
  26. Grodzinsky F (2011) Fields, forces, and flows in biological systems. Garland Science, Taylor & Francis Group, London & New YorkGoogle Scholar
  27. Haj-Yasein NN, Bugge CE, Jensen V, Ostby I, Ottersen OP (2014) Deletion of aquaporin-4 increases extracellular K(+) concentration during synaptic stimulation in mouse hippocampus. Brain Struct Funct 220:2469–74CrossRefGoogle Scholar
  28. Haj-Yasein NN, Bugge CE, Jensen V, Østby I, Ottersen OP (2015) Deletion of aquaporin-4 increases extracellular K(+) concentration during synaptic stimulation in mouse hippocampus. Brain Struct Funct 220:2469–2474CrossRefGoogle Scholar
  29. Halnes G, Augustinaite S, Heggelund P, Einevoll GT, Migliore M (2011) A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus. PLoS Comput Biol 7:e1002160CrossRefGoogle Scholar
  30. Halnes G, Ostby I, Pettersen KH, Omholt SW, Einevoll GT (2013) Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS Computat Biol 9:e1003386CrossRefGoogle Scholar
  31. Halnes G, Mäki-Marttunen T, Keller D, Pettersen KH, Andreassen OA, Einevoll GT (2016) Effect of ionic diffusion on extracellular potentials in neural tissue. PLOS Comput Biol 12(11):e1005193CrossRefGoogle Scholar
  32. Halnes G, Mäki-Marttunen T, Pettersen KH, Andreassen OA, Einevoll GT (2017) Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis. J Neurophysiol 118(1):114–120CrossRefGoogle Scholar
  33. Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497CrossRefGoogle Scholar
  34. Hashido M, Kidera A, Ikeguchi M (2007) Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 93:373–385CrossRefGoogle Scholar
  35. Hertz L, Peng L, Dienel GA (2006) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab (Official J Int Soc Cereb Blood Flow Metab) 27:219–249CrossRefGoogle Scholar
  36. Hertz L, Xu J, Song D, Yan E, Gu L et al (2013) Astrocytic and neuronal accumulation of elevated extracellular K+ with a 2/3 K+/Na+ flux ratioconsequences for energy metabolism, osmolarity and higher brain function. Front Computat Neurosci 7:1–22Google Scholar
  37. Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11:26CrossRefGoogle Scholar
  38. Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, ... Pettersen KH (2017) Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proceedings of the National Academy of Sciences, 201706942Google Scholar
  39. Hübel N, Dahlem MA (2014) Dynamics from seconds to hours in Hodgkin-Huxley model with time-dependent ion concentrations and buffer reservoirs. PLoS Comput Biol 10:e1003941CrossRefGoogle Scholar
  40. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al (2012) A Paravascular pathway facilitates CSF flow through the brain Parenchyma and the clearance of interstitial solutes, including amyloid \(\beta \). Sci Transl Med 4: 147ra111–147ra111Google Scholar
  41. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199CrossRefGoogle Scholar
  42. Jensen MS, Yaari Y (1997) Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol 77:1224–33CrossRefGoogle Scholar
  43. Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Nat Acad Sci United States Am 91:13052–13056CrossRefGoogle Scholar
  44. Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol 84:495–512CrossRefGoogle Scholar
  45. Kager H, Wadman WJ, Somjen GG (2006) Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 22:105–128CrossRefGoogle Scholar
  46. Kandel ER, Markram H, Matthews PM, Yuste R, Koch C (2013) Neuroscience thinks big (and collaboratively). Nat Rev Neurosci 14:659–664CrossRefGoogle Scholar
  47. Koch C (1999) Biophysics of computation: information processing in single neurons, 1st edn. Oxford University Press, New YorkGoogle Scholar
  48. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–56CrossRefGoogle Scholar
  49. Kríz N, Syková E, Vyklický L (1975) Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. J Physiol 1:167–182Google Scholar
  50. Léonetti M, Dubois-Violette E (1998) Theory of electrodynamic instabilities in biological cells. Phys Rev Lett 81:1977–1980CrossRefGoogle Scholar
  51. Lopreore CL, Bartol TM, Coggan JS, Keller DX, Sosinsky GE (2008) Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys J 95:2624–35CrossRefGoogle Scholar
  52. Lothman E, Somjen G (1975) Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol 1:115–136CrossRefGoogle Scholar
  53. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341CrossRefGoogle Scholar
  54. Lu B, Zhou YC, Ga Huber, Bond SD, Holst MJ (2007) Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J Chem Phys 127:135102CrossRefGoogle Scholar
  55. Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol 44:619–39PubMedGoogle Scholar
  56. Macaulay N, Zeuthen T (2012) Glial K clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–309CrossRefGoogle Scholar
  57. Mori Y (2009) From three-dimensional electrophysiology to the cable model: an asymptotic study. arXiv:09013914 [q-bioNC]: 1–39
  58. Nanninga PM (2008) A computational neuron model based on Poisson Nernst Planck theory. ANZIAM J 50:46–59CrossRefGoogle Scholar
  59. Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–6CrossRefGoogle Scholar
  60. Newman EA (1987) Distribution of potassium conductance in mammalian Muller (glial) cells: a comparative study. J Neurosci 7:2423–2432PubMedGoogle Scholar
  61. Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci (Official J Soc Neurosci) 13:3333–45CrossRefGoogle Scholar
  62. Nicholson C, Chen K, Hrabětová S, Tao L (2000) Diffusion of molecules in brain extracellular space: theory and experiment. Progr Brain Res 125:129–154CrossRefGoogle Scholar
  63. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the Neurophysics of EEG, 2nd edn. Oxford University Press, IncCrossRefGoogle Scholar
  64. Odette L, Newman EA (1988) Model of potassium dynamics in the central nervous system. Glia 210:198–210CrossRefGoogle Scholar
  65. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806CrossRefGoogle Scholar
  66. Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E et al (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comp Biol 5:e1000272CrossRefGoogle Scholar
  67. Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2012) Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. J Comput Neurosci 32:147–165CrossRefGoogle Scholar
  68. Pangrsic T, Potokar M, Haydon PG, Zorec R, Kreft M (2006) Astrocyte swelling leads to membrane unfolding, not membrane insertion. J. Neurochem 99(2):514–523CrossRefGoogle Scholar
  69. Park EH, Durand DM (2006) Role of potassium lateral diffusion in non-synaptic epilepsy: a computational study. J Theoret Biol 238:666–82CrossRefGoogle Scholar
  70. Pods J, Schönke J, Bastian P (2013) Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations-numerical simulation of the intra- and extracellular potential for an axon model. Biophys J 105:242–54CrossRefGoogle Scholar
  71. Qian N, Sejnowski T (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol Cybern 15:1–15CrossRefGoogle Scholar
  72. Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel E, Brookhardt J, Mountcastle VM (eds) Handbook of physiology, Bethesda: American Physiological Society, chapter 3, pp 39–97Google Scholar
  73. Rutkowska G, Haughton V, Linge S, Mardal KA (2012) Patient-specific 3d simulation of cyclic csf flow at the craniocervical region. Am J Neuroradiol 33:1756–1762CrossRefGoogle Scholar
  74. Safronov BV, Wolff M, Vogel W (1999) Axonal expression of sodium channels in rat spinal neurones during postnatal development. J Physiol 514(Pt 3):729–734CrossRefGoogle Scholar
  75. Sibille J, Duc KD, Holcman D, Rouach N (2015) The neuroglial potassium cycle during neurotransmission: role of kir4. 1 channels. PLoS Comput Biol 11:e1004137CrossRefGoogle Scholar
  76. Silberstein C (2004) Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. AJP. Renal Physiol 287:F501–F511CrossRefGoogle Scholar
  77. Smith AJ, Jin BJ, Verkman AS (2015) Muddying the water in brain edema? Trends Neurosci 38:331–332CrossRefGoogle Scholar
  78. Solbrå A, Bergersen AW, van den Brink J, Malthe-Sørenssen A, Einevoll GT, Halnes G (2018) A Kirchhoff-Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons. BioRxiv. 261107Google Scholar
  79. Somjen GG (2004) Ions in the brain: normal function, seizures, and stroke, 1 edn. Oxford University Press, USAGoogle Scholar
  80. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096CrossRefGoogle Scholar
  81. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Computat Neurosci 25:349–65CrossRefGoogle Scholar
  82. Støverud K, Langtangen H, Haughton V, Mardal K (2013) Csf pressure and velocity in obstructions of the subarachnoid spaces. Neuroradiol J 26:218–226CrossRefGoogle Scholar
  83. Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340CrossRefGoogle Scholar
  84. Thrane AS, Rangroo Thrane V, Plog BA, Nedergaard M (2015) Filtering the muddied waters of brain edema. Trends Neurosci 38:333–335CrossRefGoogle Scholar
  85. Tong J, Briggs MM, McIntosh TJ (2012) Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity. Biophysl J 103:1899–1908CrossRefGoogle Scholar
  86. Tully BJ, Ventikos Y (2011) Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J Fluid Mech 667:188–215CrossRefGoogle Scholar
  87. Ullah G, Schiff S (2009) Models of epilepsy. Scholarpedia 4:1409CrossRefGoogle Scholar
  88. Vardakis JC, Tully BJ, Ventikos Y (2013) Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: A computational perspective. PloS ONE 8:1–16CrossRefGoogle Scholar
  89. Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. WileyGoogle Scholar
  90. Wang DD, Bordey A (2008) The astrocyte odyssey. Progr Neurobiol 86:342–67Google Scholar
  91. Xie L, Kang H, Xu Q, Chen MJ, Liao Y (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377CrossRefGoogle Scholar
  92. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594CrossRefGoogle Scholar
  93. Zhang H, Verkman AS (2008) Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells. Mol Cell Neurosci 37:1–10CrossRefGoogle Scholar
  94. Ziburkus J, Cressman JR, Barreto E, Schiff SJ (2006) Interneuron and pyramidal cell interplay during in vitro seizure-like events. J Neurophysiol 95:3948–54CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Geir Halnes
    • 1
    Email author
  • Klas H. Pettersen
    • 2
  • Leiv Øyehaug
    • 3
  • Marie E. Rognes
    • 4
    • 5
  • Gaute T. Einevoll
    • 1
    • 6
  1. 1.Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
  2. 2.Letten Centre and GliaLab, Centre for Molecular MedicineUniversity of OsloOsloNorway
  3. 3.Faculty of Technology, Art and DesignOsloMet - Oslo Metropolitan UniversityOsloNorway
  4. 4.Simula Research LaboratoryFornebuNorway
  5. 5.Department of MathematicsUniversity of OsloOsloNorway
  6. 6.Department of PhysicsUniversity of OsloOsloNorway

Personalised recommendations