Glutamate Uptake by Astrocytic Transporters

  • Konstantin Mergenthaler
  • Franziska Oschmann
  • Klaus ObermeyerEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


Astrocytes express glutamate transporters at high density at perisynaptic processes which can tightly control extracellular glutamate levels in proximity of postsynaptic receptors with the potential to modulate functional neuronal activity. Glutamate uptake by these transporters also closely depends on activity-dependent extracellular ion concentrations and may also be regulated by the astrocyte’s intracellular calcium. On the other hand, intracellular \(\mathrm{Ca}^{2+}\) dynamics in the astrocyte too can be modulated by glutamate uptake, with potential for functionally relevant interactions with neural activity. Here, we introduce original modeling arguments to study functional implications of glutamate uptake by astrocytes both on their physiology and on that of neurons. In the first case, we consider the contribution of \(\mathrm{{Na^+}}\) and \(\mathrm{{K^+}}\) homeostasis to astrocytic glutamate uptake, revealing that intracellular anisotropy could account for spatial segregation of transporter- versus receptor-mediated calcium signaling pathways. In the second case, we study how regulation of extracellular glutamate levels by astrocytic transporters could affect tuning responses of primary sensory areas, linking our analysis to experimental observations in the ferret’s primary visual cortex by Schummers et al. (2008, Science 320:1638). We conclude that glutamate uptake by astrocytes can modulate function of neuronal circuits in multiple ways that may look subtle at individual synaptic contacts, but at network level, lead instead to functionally relevant changes in neuronal tuning and stimulus discrimination.


Sodium-Calcium-Exchanger (NCX) Sodium Network dynamics Dynamic astrocyte-neuron interactions Postynaptic coupling NMDA-receptors 



\(\upalpha \)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (receptor)


\(\mathrm{Ca}^{2+}\)-induced \(\mathrm{Ca}^{2+}\) release


excitatory amino acid transporters


excitatory postsynaptic current


\(\upgamma \)-aminobutyric acid


\(\mathrm{{GABA_A}}\) receptor


glutamate aspartate transporter


type 1 glutamate transporter


half width at half maximum


metabotropic glutamate receptor


Inositol 1,4,5-trisphosphate receptor






N-Methyl-d-aspartate (receptor)


textscdl-threo-\(\beta \)-benzyloxyaspartate


primary visual cortex



The authors wish to thank Jeremy Petravicz and Mriganka Sur for insightful discussions and Maurizio De Pittà for helping to revise and edit this manuscript in its final form. This work was supported by the Bundesministerium für Bildung und Forschung to KM (grant 01GQ-1009) and by the Deutsche Forschungsgemeinschaft to FO (Graduiertenkolleg 1589).


  1. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allam SL, Ghaderi VS, Bouteiller J-MC, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci 6:70PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barbour B, Keller BU, Llano I, Marty A (1994) Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12(6):1331–1343PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189PubMedPubMedCentralGoogle Scholar
  6. Benediktsson AM, Marrs GS, Tu JC, Worley PF, Rothstein JD, Bergles DE, Dailey ME (2012) Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 60(2):175–188PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bentzen NCK, Zhabotinsky AM, Laugesen JL (2009) Modeling of glutamate-induced dynamical patterns. Int J Neural Syst 19(6):395–407PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bergles DE, Tzingounis AV, Jahr CE (2002) Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22(23):10153–10162PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bertschinger N, Natschläger T (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput 16(7):1413–1436PubMedCrossRefPubMedCentralGoogle Scholar
  10. Billups B, Rossi D, Attwell D (1996) Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J Neurosci 16(21):6722–6731PubMedCrossRefPubMedCentralGoogle Scholar
  11. Blaustein MP, Santiago EM (1977) Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J 20(1):79–111PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blaustein MP, Blaustein MP, Lederer WJ, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79(3):763–854PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bøttger P, Doganli C, Lykke-Hartmann K (2012) Migraine- and dystonia-related disease-mutations of Na +/K +-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 36(2):855–871PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208PubMedCrossRefGoogle Scholar
  15. Campbell SL, Hablitz JJ (2004) Glutamate transporters regulate excitability in local networks in rat neocortex. Neuroscience 127(3):625–635PubMedCrossRefPubMedCentralGoogle Scholar
  16. Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19(5):163–171CrossRefGoogle Scholar
  17. Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258(5087):1498–1501PubMedPubMedCentralCrossRefGoogle Scholar
  18. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105PubMedCrossRefGoogle Scholar
  19. Dayan P, Abbott LF (2001) Theoretical neuronscience: computational and mathematical modeling of neural systems. The MIT Press, Cambridge, Massachusetts, London, EnglandGoogle Scholar
  20. De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plasticity, p 7607924Google Scholar
  21. De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009) Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J Biol Phys 35(4):383–411PubMedPubMedCentralGoogle Scholar
  22. De Pittà M, Brunel N, Volterra A (2015) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323Google Scholar
  23. Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547PubMedCrossRefPubMedCentralGoogle Scholar
  24. Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1(3):195–230CrossRefGoogle Scholar
  25. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods neuronal model, 2nd edn. MIT Press, Cambridge, pp 1–25Google Scholar
  26. Diamond JS (2001) Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci 21(21):8328–8338PubMedCrossRefPubMedCentralGoogle Scholar
  27. Diamond JS (2005) Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci 25(11):2906–2916CrossRefGoogle Scholar
  28. Divito CB, Underhill SM (2014) Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 73(1):172–180PubMedCrossRefPubMedCentralGoogle Scholar
  29. Drejer J, Larsson O, Schousboe A (1982) Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res 47(2):259–269PubMedCrossRefPubMedCentralGoogle Scholar
  30. Drejer J, Larsson OM, Schousboe A (1990) Characterization of glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res 47, 167–177Google Scholar
  31. Efraimidis P, Spirakis P (2008) Weighted random sampling. In: Kao M-Y (ed) Encyclopedia of Algorithms. Springer, US, pp 1024–1027CrossRefGoogle Scholar
  32. Estrada-Sánchez AM, Rebec GV (2012) Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: interactions between neurons and astrocytes. Basal Ganglia 2(2):57–66PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fiacco TA, McCarthy KD (2018) Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 38(1):3–13PubMedPubMedCentralCrossRefGoogle Scholar
  34. Freche D, Pannasch U, Rouach N, Holcman D (2011) Synapse geometry and receptor dynamics modulate synaptic strength. PLoS One 6(10)PubMedPubMedCentralCrossRefGoogle Scholar
  35. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157(1):80–94PubMedPubMedCentralCrossRefGoogle Scholar
  36. Geering K (2008) Functional roles of Na. K-ATPase subunits. Curr Opin Nephrol Hypertens 17(5):526–532PubMedCrossRefPubMedCentralGoogle Scholar
  37. Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW (2006) Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol 4(11):e343PubMedPubMedCentralCrossRefGoogle Scholar
  38. Goldman WF, Yarowsky PJ, Juhaszova M, Krueger BK, Blaustein MP (1994) Sodium/calcium exchange in rat cortical astrocytes. J Neurosci 14(10):5834–5843PubMedCrossRefPubMedCentralGoogle Scholar
  39. Golovina VA (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science (80-.) 275(5306):1643–1648CrossRefGoogle Scholar
  40. Goubard V, Fino E, Venance L (2011) Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing. J Physiol 589(Pt 9):2301–2319PubMedPubMedCentralCrossRefGoogle Scholar
  41. Greget R, Pernot F, Bouteiller J-MC, Ghaderi VS, Allam SL, Keller AF, Ambert N, Legendre A, Sarmis M, Haeberle O, Faupel M, Bischoff S, Berger TW, Baudry M (2011) Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission. PLoS One 6(12):e28380PubMedPubMedCentralCrossRefGoogle Scholar
  42. Grewer C, Gameiro A, Zhang Z, Tao Z, Braams S, Rauen T (2008) Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60(9):609–619PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19(22):10082–10097PubMedCrossRefPubMedCentralGoogle Scholar
  44. Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26(35):8881–8891PubMedCrossRefGoogle Scholar
  45. Hassel B, Tessler S, Faull RLM, Emson PC (2008) Glutamate uptake is reduced in prefrontal cortex in Huntingtons disease. Neurochem Res 33(2):232–237PubMedCrossRefPubMedCentralGoogle Scholar
  46. Haugeto Ø, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271(44):27715–27722PubMedCrossRefPubMedCentralGoogle Scholar
  47. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27(36):9736–9741PubMedPubMedCentralCrossRefGoogle Scholar
  48. Holcman D, Schuss Z (2014) Time scale of diffusion in molecular and cellular biology. J Phys A 47(17):173001CrossRefGoogle Scholar
  49. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013PubMedPubMedCentralCrossRefGoogle Scholar
  50. Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE (2004) Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 24(19):4551–4559PubMedCrossRefGoogle Scholar
  51. Illarionava NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na, K-ATPase a1 and a2 isoforms in the support of astrocyte glutamate uptake. PLoS One 9(6)PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gähwiler BH, Gerber U (1999) Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci U S A 96(15):8733–8738PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jarzylo LA, Man H-Y (2012) Parasynaptic NMDA receptor signaling couples neuronal glutamate transporter function to AMPA receptor synaptic distribution and stability. J Neurosci 32(7):2552–2563PubMedPubMedCentralCrossRefGoogle Scholar
  55. John CS, Sypek EI, Carlezon WA, Cohen BM, Öngür D, Bechtholt AJ (2015) Blockade of the GLT-1 transporter in the central nucleus of the Amygdala induces both anxiety and depressive-like symptoms. Neuropsychopharmacology 40(7):1700–1708PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kanner BI (2006) Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 213(2):89–100PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kelly T, Kafitz KW, Roderigo C, Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57(9):921–934PubMedCrossRefPubMedCentralGoogle Scholar
  58. Koester HJ, Johnston D (2005) Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308(5723):863–866PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18(21):8751–8757CrossRefGoogle Scholar
  60. Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12(2):635–643PubMedCrossRefPubMedCentralGoogle Scholar
  61. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18(23):9620–9628PubMedCrossRefGoogle Scholar
  62. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid \(\beta\) protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62(6):788–801PubMedPubMedCentralCrossRefGoogle Scholar
  63. Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74(6):1071–1096PubMedCrossRefPubMedCentralGoogle Scholar
  64. Li S, Stys PK (2001) Na+-K+-ATPase inhibition and depolarization induce glutamate release via reverse Na+-dependent transport in spinal cord white matter. Neuroscience 107(4):675–683PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mariño J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201PubMedCrossRefPubMedCentralGoogle Scholar
  66. Mironov VI, Romanov AS, Simonov AY, Vedunova MV, Kazantsev VB (2014) Oscillations in a neurite growth model with extracellular feedback. Neurosci Lett 570:16–20PubMedCrossRefPubMedCentralGoogle Scholar
  67. Montes J, Gomez E, Merchán-Pérez A, DeFelipe J, Peña J-M (2013) A machine learning method for the prediction of receptor activation in the simulation of synapses. PloS One 8(7):e68888PubMedPubMedCentralCrossRefGoogle Scholar
  68. Montes J, Peña JM, DeFelipe J, Herreras O, Merchan-Perez A (2015) The influence of synaptic size on AMPA receptor activation: a Monte Carlo model. PLoS One 10(6):e0130924PubMedPubMedCentralCrossRefGoogle Scholar
  69. Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, Groc L, Oliet SHR (2015) Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci 18(2)PubMedCrossRefGoogle Scholar
  70. Nedergaard M, Verkhratsky A (2012) Artifact versus reality: how astrocytes contribute to synaptic events. Glia 60(7):1013–1023PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nie H, Weng H-R (2009) Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn. J Neurophysiol 101(4):2041–2051PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nie H, Zhang H, Weng H-R (2010) Bidirectional neuron-glia interactions triggered by deficiency of glutamate uptake at spinal sensory synapses. J Neurophysiol 104(2):713–725PubMedPubMedCentralCrossRefGoogle Scholar
  73. Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T, Lloyd CM, Ottersen OP, Omholt SW, (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5(1):e1000272PubMedPubMedCentralCrossRefGoogle Scholar
  74. Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Watanabe M, Hirose K, Iino M (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proc Nat Acad Sci USA 107(14):6526–6531PubMedCrossRefPubMedCentralGoogle Scholar
  75. Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292(5518):923–926PubMedCrossRefGoogle Scholar
  76. Oschmann F, Mergenthaler K, Jungnickel E, Obermayer K (2017) Spatial separation of two different pathways accaccount for the generation of calcium signals in astrocytes. PLoS Comput Biol 13(2):e1005377PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pannasch U, Freche D, Dallérac G, Ghézali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lübke JHR, Déglon N, Knott G, Holcman D, Rouach N (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17(4):549–558PubMedCrossRefPubMedCentralGoogle Scholar
  78. Patrushev I, Gavrilov N, Turlapov V, Semyanov A (2013) Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication. Cell Calcium 54(5):343–349PubMedCrossRefPubMedCentralGoogle Scholar
  79. Petr GT, Sun Y, Frederick XNM, Zhou Y, Dhamne SC, Hameed XMQ, Miranda XC, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki XCJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35(13):5187–5201PubMedPubMedCentralCrossRefGoogle Scholar
  80. Piet R, Vargová L, Syková E, Poulain DA, Oliet SHR (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101(7):2151–2155PubMedCrossRefGoogle Scholar
  81. Pivneva T, Haas B, Reyes-Haro D, Laube G, Veh R, Nolte C, Skibo G, Kettenmann H (2008) Store-operated Ca\(^{2+}\) entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium 43(6):591–601PubMedPubMedCentralCrossRefGoogle Scholar
  82. Poskanzer KE, Molofsky AV (2018) Dynamism of an astrocyte in vivo: perspectives on identity and function. Ann Rev Physiol 80:143–157CrossRefGoogle Scholar
  83. Poskanzer KE, Yuste R (2011) Astrocytic regulation of cortical UP states. Proc Natl Acad Sci 108(45):18453–18458PubMedCrossRefPubMedCentralGoogle Scholar
  84. Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci 113(19):E2675–E2684PubMedCrossRefPubMedCentralGoogle Scholar
  85. Raynaud X, Nordaas M, Lehre KP, Danbolt NC (2015) Well-posedness of a model equation for neurotransmitter diffusion with reactive boundaries. Math Model Methods Appl Sci 25(02):195–227CrossRefGoogle Scholar
  86. Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63(1):11–25PubMedCrossRefGoogle Scholar
  87. Rojas H, Colina C, Ramos M, Benaim G, Jaffe EH, Caputo C, DiPolo R (2007) Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca(i)2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes. J Neurochem 100(5):1188–1202PubMedCrossRefPubMedCentralGoogle Scholar
  88. Rose CR, Chatton J-Y (2016) Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 323:121–134PubMedCrossRefGoogle Scholar
  89. Rose CR, Ransom BR (1996) Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci 16(17):5393–5404PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rose EM, Koo JCP, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na. K-ATPase. J Neurosci 29(25):8143–8155PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686PubMedCrossRefPubMedCentralGoogle Scholar
  92. Rusakov DA (2001) The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca(2+) depletion. Biophys J 81(4):1947–1959PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18(9):3158–3170PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rusakov DA, Lehre KP (2002) Perisynaptic asymmetry of glia: new insights into glutamate signalling. Trends Neurosci 25(10):492–494PubMedCrossRefPubMedCentralGoogle Scholar
  95. Saftenku EE (2005) Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus. J Theor Biol 234(3):363–382PubMedCrossRefPubMedCentralGoogle Scholar
  96. Savtchenko LP, Rusakov DA (2007) The optimal height of the synaptic cleft. Proc Natl Acad Sci USA 104(6):1823–1828PubMedCrossRefPubMedCentralGoogle Scholar
  97. Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38(1):14–25CrossRefGoogle Scholar
  98. Schummers J, Cronin B, Wimmer K, Stimberg M, Martin R, Obermayer K, Koerding K, Sur M (2007) Dynamics of orientation tuning in cat v1 neurons depend on location within layers and orientation maps. Front Neurosci 1(1):145–159PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643PubMedCrossRefPubMedCentralGoogle Scholar
  100. Scimemi A, Beato M (2009) Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 40(3):289–306PubMedPubMedCentralCrossRefGoogle Scholar
  101. Scimemi A, Tian H, Diamond JS (2009) Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci 29(46):14581–14595PubMedPubMedCentralCrossRefGoogle Scholar
  102. Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG (2013) Amyloid-\(\beta\)1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 33(12):5312–5318PubMedPubMedCentralCrossRefGoogle Scholar
  103. Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging 32(3):553–e1PubMedCrossRefPubMedCentralGoogle Scholar
  104. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896PubMedCrossRefPubMedCentralGoogle Scholar
  105. Smith SL, Häusser M (2010) Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat Neurosci 13(9):1144–1149PubMedPubMedCentralCrossRefGoogle Scholar
  106. Stimberg M, Wimmer K, Martin R, Schwabe L, Mariño J, Schummers J, Lyon DC, Sur M, Obermayer K (2009) The operating regime of local computations in primary visual cortex. Cereb Cortex 19(9):2166–2180PubMedPubMedCentralCrossRefGoogle Scholar
  107. Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10(6):735–742PubMedCrossRefPubMedCentralGoogle Scholar
  108. Takuma K, Matsuda T, Hashimoto H, Asano S, Baba A (1994) Cultured rat astrocytes possess Na(+)-Ca2+ exchanger. Glia 12(4):336–342PubMedCrossRefPubMedCentralGoogle Scholar
  109. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702PubMedCrossRefPubMedCentralGoogle Scholar
  110. Tanaka M, Shih P-Y, Gomi H, Yoshida T, Nakai J, Ando R, Furuichi T, Mikoshiba K, Semyanov A, Itohara S (2013) Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol Brain 6(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tarczy-Hornoch K, Martin KAC, Jack JJB, Stratford KJ (1998) Synaptic interactions bewteen smooth and spiny neurones in layer 4 of cat visual cortex \(\backslash\)in vitro. J Physiol 508(2):351–363PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tong G, Jahr CE (1994) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13(5):1195–1203PubMedCrossRefPubMedCentralGoogle Scholar
  113. Tsacopoulos M (2002) Metabolic signaling between neurons and glial cells: a short review. J Physiol 96(3–4):283–288Google Scholar
  114. Tsaneva-Atanasova K, Burgo A, Galli T, Holcman D (2009) Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. Biophys J 96(3):840–857PubMedPubMedCentralCrossRefGoogle Scholar
  115. Tsukada S, Iino M, Takayasu Y, Shimamoto K, Ozawa S (2005) Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology 48(4):479–491PubMedCrossRefPubMedCentralGoogle Scholar
  116. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8(12):935–947CrossRefGoogle Scholar
  117. Uhlhaas P, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1):155–168PubMedCrossRefPubMedCentralGoogle Scholar
  118. Underhill SM, Wheeler XDS, Amara SG (2015) Differential regulation of two isoforms of the Glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci 35(13):5260–5270PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14(5):1019–1027PubMedCrossRefPubMedCentralGoogle Scholar
  120. Weng H-R, Chen JH, Pan ZZ, Nie H (2007) Glial glutamate transporter 1 regulates the spatial and temporal coding of glutamatergic synaptic transmission in spinal lamina II neurons. Neuroscience 149(4):898–907PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zahler R, Zhang ZT, Manor M, Boron WF (1997) Sodium kinetics of Na, K-ATPase alpha isoforms in intact transfected HeLa cells. J Gen Physiol 110(2):201–213PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637PubMedCrossRefPubMedCentralGoogle Scholar
  123. Zheng K, Rusakov DA (2015) Efficient integration of synaptic events by NMDA receptors in three-dimensional neuropil. Biophys J 108(10):2457–2464PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zheng K, Scimemi A, Rusakov DA (2008) Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys J 95(10):4584–4596PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantin Mergenthaler
    • 1
  • Franziska Oschmann
    • 1
  • Klaus Obermeyer
    • 1
    Email author
  1. 1.Neural Information Processing, Electrical Engineering & Computer Science and Bernstein Center for Computational NeuroscienceTechnische Universität BerlinBerlinGermany

Personalised recommendations