Advertisement

The Role of Astrocytes in Neurotransmitter Uptake and Brain Metabolism

  • Annalisa ScimemiEmail author
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

Termination of synaptic transmission relies on neurotransmitter diffusion and removal from the extracellular space by specific molecules called transporters, abundantly expressed in astrocytes. Here we describe the biophysical mechanisms of neurotransmitter transport across the astrocyte membrane and the biochemical pathways that supply energy to these cells. These findings indicate that astrocytes are crucial regulators of brain activity, due to their ability to shape synaptic transmission and control the energy budget of the entire brain.

Keywords

Transporters Astrocytes Metabolism 

References

  1. Afzalov R, Pryazhnikov E, Shih PY, Kondratskaya E, Zobova S, Leino S et al (2013) Low micromolar Ba(2+) potentiates glutamate transporter current in hippocampal astrocytes. Front Cell Neurosci 7:135Google Scholar
  2. Akyuz N, Altman RB, Blanchard SC, Boudker O (2013) Transport dynamics in a glutamate transporter homologue. Nature 502(7469):114–118PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asztely F, Erdemli G, Kullmann DM (1997) Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18(2):281–293PubMedCrossRefGoogle Scholar
  4. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145CrossRefGoogle Scholar
  5. Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11(3):401–417PubMedCrossRefGoogle Scholar
  6. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aubert A, Costalat R (2005) Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J Cereb Blood Flow Metab 25(11):1476–1490CrossRefGoogle Scholar
  8. Aubert A, Pellerin L, Magistretti PJ, Costalat R (2007) A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl Acad Sci USA 104(10):4188–4193CrossRefGoogle Scholar
  9. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653PubMedCrossRefGoogle Scholar
  10. Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984PubMedCrossRefGoogle Scholar
  11. Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A et al (1997) Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69(6):2571–2580CrossRefGoogle Scholar
  12. Belanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 31(50):18338–18352PubMedCrossRefGoogle Scholar
  13. Belanger M, Allaman I, Magistretti PJ (2015) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738PubMedCrossRefGoogle Scholar
  14. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19(6):1297–308PubMedCrossRefGoogle Scholar
  15. Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 18(19):7709–7716PubMedCrossRefGoogle Scholar
  16. Bergles DE, Tzingounis AV, Jahr CE (2002) Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22(23):10153–10162PubMedCrossRefGoogle Scholar
  17. Bicho A, Grewer C (2005) Rapid substrate-induced charge movements of the GABA transporter GAT1. Biophys J 89(1):211–231PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cammack JN, Schwartz EA (1996) Channel behavior in a gamma-aminobutyrate transporter. Proc Natl Acad Sci USA 93(2):723–727CrossRefGoogle Scholar
  19. Chatton JY, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci USA 100(21):12456–12461CrossRefGoogle Scholar
  20. Chiu DN, Jahr CE (2017) Extracellular glutamate in the nucleus accumbens is nanomolar in both synaptic and non-synaptic compartments. Cell Rep 18(11):2576–2583PubMedPubMedCentralCrossRefGoogle Scholar
  21. Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75(6):1094–1104PubMedPubMedCentralCrossRefGoogle Scholar
  22. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cruz NF, Lasater A, Zielke HR, Dienel GA (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92(4):934–947PubMedCrossRefGoogle Scholar
  24. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105PubMedCrossRefGoogle Scholar
  25. De Saint Jan D, Westbrook GL (2005) Detecting activity in olfactory bulb glomeruli with astrocyte recording. J Neurosci 25(11):2917–2924Google Scholar
  26. DeSilva TM, Borenstein NS, Volpe JJ, Kinney HC, Rosenberg PA (2012) Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol 520(17):3912–3932PubMedCrossRefGoogle Scholar
  27. Diamond JS (2005) Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci 25(11):2906–2916PubMedCrossRefGoogle Scholar
  28. Diamond JS, Bergles DE, Jahr CE (1998) Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21(2):425–433PubMedCrossRefGoogle Scholar
  29. Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22(12):1490–1502CrossRefGoogle Scholar
  30. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(3):586–602CrossRefGoogle Scholar
  31. Eckstein-Ludwig U, Fei J, Schwarz W (1999) Inhibition of uptake, steady-state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs. Br J Pharmacol 128(1):92–102PubMedPubMedCentralCrossRefGoogle Scholar
  32. Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17(21):8363–8375PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gonzales AL, Lee W, Spencer SR, Oropeza RA, Chapman JV, Ku JY et al (2007) Turnover rate of the gamma-aminobutyric acid transporter GAT1. J Membr Biol 220(1–3):33–51Google Scholar
  34. Grewer C, Watzke N, Wiessner M, Rauen T (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci USA 97(17):9706–9711CrossRefGoogle Scholar
  35. Grewer C, Balani P, Weidenfeller C, Bartusel T, Tao Z, Rauen T (2005) Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44(35):11913–11923PubMedPubMedCentralCrossRefGoogle Scholar
  36. Halim ND, McFate T, Mohyeldin A, Okagaki P, Korotchkina LG, Patel MS et al (2010) Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58(10):1168–1176PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hanson E, Armbruster M, Cantu D, Andresen L, Taylor A, Danbolt NC et al (2015) Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex. GliaGoogle Scholar
  38. He Y, Janssen WG, Rothstein JD, Morrison JH (2000) Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus. J Comp Neurol 418(3):255–269PubMedCrossRefPubMedCentralGoogle Scholar
  39. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27(36):9736–9741PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249CrossRefGoogle Scholar
  41. Hilgemann DW, Lu CC (1999) GAT1 (GABA: Na+: Cl-) cotransport function. Database reconstruction with an alternating access model. J Gen Physiol 114(3):459–475PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+ -dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8(6):1922–1928PubMedCrossRefGoogle Scholar
  43. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN et al (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013PubMedCrossRefGoogle Scholar
  44. Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE (2004) Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 24(19):4551–4559PubMedCrossRefGoogle Scholar
  45. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26(7):865–877CrossRefGoogle Scholar
  46. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E et al (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100(8):4879–4884CrossRefGoogle Scholar
  47. Jolivet R, Magistretti PJ, Weber B (2009) Deciphering neuron-glia compartmentalization in cortical energy metabolism. Front Neuroenergetics 1:4Google Scholar
  48. Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B (2010) Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30(12):1982–1986CrossRefGoogle Scholar
  49. Kavanaugh MP, Arriza JL, North RA, Amara SG (1992) Electrogenic uptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J Biol Chem 267(31):22007–22009Google Scholar
  50. Koch HP, Larsson HP (2005) Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J Neurosci 25(7):1730–1736PubMedCrossRefGoogle Scholar
  51. Koch HP, Brown RL, Larsson HP (2007) The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J Neurosci 27(11):2943–2947PubMedCrossRefGoogle Scholar
  52. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18(21):8751–8757PubMedCrossRefGoogle Scholar
  53. Lennie P (2003) The cost of cortical computation. Curr Biol 13(6):493–497PubMedCrossRefGoogle Scholar
  54. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18(23):9620–9628PubMedCrossRefGoogle Scholar
  55. Liu Y, Eckstein-Ludwig U, Fei J, Schwarz W (1998) Effect of mutation of glycosylation sites on the Na+ dependence of steady-state and transient currents generated by the neuronal GABA transporter. Biochim Biophys Acta 1415(1):246–254CrossRefGoogle Scholar
  56. Mager S, Naeve J, Quick M, Labarca C, Davidson N, Lester HA (1993) Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10(2):177–188PubMedCrossRefGoogle Scholar
  57. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901PubMedPubMedCentralCrossRefGoogle Scholar
  58. Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci USA 78(10):6535–6539CrossRefGoogle Scholar
  59. Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA et al (2009) Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 29(3):441–463CrossRefGoogle Scholar
  60. Mangia S, DiNuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ (2011) Response to ‘comment on recent modeling studies of astrocyte-neuron metabolic interactions’: much ado about nothing. J Cereb Blood Flow Metab 31(6):1346–1353CrossRefGoogle Scholar
  61. Marcaggi P, Attwell D (2004) Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47(3):217–225Google Scholar
  62. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85(15):3347–3358PubMedCrossRefGoogle Scholar
  63. Melone M, Barbaresi P, Fattorini G, Conti F (2005) Neuronal localization of the GABA transporter GAT-3 in human cerebral cortex: a procedural artifact? J Chem Neuroanat 30(1):45–54PubMedCrossRefGoogle Scholar
  64. Mennerick S, Shen W, Xu W, Benz A, Tanaka K, Shimamoto K et al (1999) Substrate turnover by transporters curtails synaptic glutamate transients. J Neurosci 19(21):9242–9251PubMedCrossRefGoogle Scholar
  65. Milton ID, Banner SJ, Ince PG, Piggott NH, Fray AE, Thatcher N et al (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Brain Res Mol Brain Res 52(1):17–31PubMedCrossRefGoogle Scholar
  66. Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16(19):6255–6264PubMedCrossRefGoogle Scholar
  67. Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Muller) cells. J Neurosci 13(8):3333–3345PubMedCrossRefGoogle Scholar
  68. Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS et al (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 4:3Google Scholar
  69. Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20(8):2749–2757PubMedCrossRefGoogle Scholar
  70. Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577(Pt 2):591–599PubMedPubMedCentralCrossRefGoogle Scholar
  71. Palmer MJ, Taschenberger H, Hull C, Tremere L, von Gersdorff H (2003) Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J Neurosci 23(12):4831–4841PubMedPubMedCentralCrossRefGoogle Scholar
  72. Parpura V, Verkhratsky A (2012a) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int 61(4):610–621PubMedCrossRefPubMedCentralGoogle Scholar
  73. Parpura V, Verkhratsky A (2012b) Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling. Croat Med J 53(6):518–528PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629CrossRefGoogle Scholar
  75. Picaud S, Larsson HP, Wellis DP, Lecar H, Werblin F (1995) Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc Natl Acad Sci USA 92(20):9417–9421CrossRefGoogle Scholar
  76. Pow DV, Sullivan RK, Williams SM, Scott HL, Dodd PR, Finkelstein D (2005) Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell Tissue Res 320(3):379–392PubMedCrossRefPubMedCentralGoogle Scholar
  77. Radian R, Kanner BI (1983) Stoichiometry of sodium- and chloride-coupled gamma-aminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry 22(5):1236–1241PubMedCrossRefPubMedCentralGoogle Scholar
  78. Radian R, Bendahan A, Kanner BI (1986) Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 261(33):15437–15441Google Scholar
  79. Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462(7275):880–885PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ribak CE, Tong WM, Brecha NC (1996) GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 367(4):595–606Google Scholar
  81. Risso S, DeFelice LJ, Blakely RD (1996) Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells. J Physiol 490(Pt 3):691–702PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rusakov DA, Kullmann DM (1998a) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18(9):3158–3170PubMedCrossRefGoogle Scholar
  83. Rusakov DA, Kullmann DM (1998b) A tortuous and viscous route to understanding diffusion in the brain. Trends Neurosci 21(11):469–470PubMedCrossRefGoogle Scholar
  84. Scimemi A, Beato M (2009) Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 40(3):289–306PubMedPubMedCentralCrossRefGoogle Scholar
  85. Scimemi A, Diamond JS (2013) Deriving the time course of glutamate clearance with a deconvolution analysis of astrocytic transporter currents. J Vis Exp (78)Google Scholar
  86. Scimemi A, Fine A, Kullmann DM, Rusakov DA (2004) NR2B-containing receptors mediate cross talk among hippocampal synapses. J Neurosci 24(20):4767–4777PubMedCrossRefGoogle Scholar
  87. Scimemi A, Tian H, Diamond JS (2009) Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci 29(46):14581–14595PubMedCrossRefGoogle Scholar
  88. Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG (2013) Amyloid-beta1–42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 33(12):5312–5318PubMedCrossRefGoogle Scholar
  89. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791CrossRefGoogle Scholar
  90. Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563(1–2):227–233PubMedCrossRefGoogle Scholar
  91. Sorg O, Pellerin L, Stolz M, Beggah S, Magistretti PJ (1995) Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortical astrocytes. Neurosci Lett 188(2):109–112PubMedCrossRefGoogle Scholar
  92. Sweeney AM, Fleming KE, McCauley JP, Rodriguez MF, Martin ET, Sousa AA et al (2017) PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology. Sci Rep 7:43606Google Scholar
  93. Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7:38Google Scholar
  94. Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8PubMedCrossRefGoogle Scholar
  95. Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51(2):451–461PubMedCrossRefGoogle Scholar
  96. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8(12):935–947PubMedCrossRefGoogle Scholar
  97. Veruki ML, Morkve SH, Hartveit E (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9(11):1388–1396PubMedCrossRefGoogle Scholar
  98. Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18(19):7650–7661PubMedCrossRefGoogle Scholar
  99. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15(3):721–728PubMedCrossRefGoogle Scholar
  100. Watzke N, Rauen T, Bamberg E, Grewer C (2000) On the mechanism of proton transport by the neuronal excitatory amino acid carrier 1. J Gen Physiol 116(5):609–622PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S et al (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 577(Pt 1):221–234PubMedPubMedCentralCrossRefGoogle Scholar
  102. Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K + homeostasis and glycogen usage in brain. Neurochem Res 38(3):472–485PubMedCrossRefGoogle Scholar
  103. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437(7056):215–223PubMedCrossRefGoogle Scholar
  104. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947PubMedCrossRefGoogle Scholar
  106. Zheng K, Scimemi A, Rusakov DA (2008) Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys J 95(10):4584–4596PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologySUNY AlbanyAlbanyUSA

Personalised recommendations