Advertisement

Computational Models of Pathophysiological Glial Activation in CNS Disorders

  • Vladislav VolmanEmail author
  • Maxim Bazhenov
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

Glial cells, in general, and astrocytes, in particular, are indispensable for homeostatic regulation of neural function, which positions these non-neuronal cells in the limelight of CNS pathologies. The renewed interest in glial physiology and the advent of new experimental methods motivated the development of computational models of glial cells. In this contribution, we review the development and challenges of computational models of pathophysiological glial activation in CNS disorders.

Keywords

Brain injury Homeostatic plasticity Computational neurology Quantitative systems pharmacology Neuroinflammation 

Notes

Acknowledgements

MB acknowledges financial support through the research grants from the Office of Naval Research (MURI, N000141310672) and National Institutes of Health (R01 EB009282 and R01 MH099645). The work of VV was sponsored by the US Army Medical Research and Materiel Command under contract W81XWH-11-D-0011. This document is cleared for all audiences for OPSEC purposes. Cleared for public release 09/25/2015. The opinions or assertions contained herein are private views of the authors and are not to be construed as official or as reflecting views of the Department of the Army or the Department of Defense. PAO reviewed.

References

  1. Agulhon C, Sun MY, Murphy T, Myers T, Lauderdale K et al (2012) Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front Pharmacol 3:1–16CrossRefGoogle Scholar
  2. Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74:1951–1960PubMedCrossRefPubMedCentralGoogle Scholar
  3. Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC et al (2003) Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615–13620PubMedCrossRefPubMedCentralGoogle Scholar
  4. Annegers JF, Hauser A, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injury. N Eng J Med 338:20–24CrossRefGoogle Scholar
  5. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142PubMedCrossRefPubMedCentralGoogle Scholar
  6. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92:1116–1132PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK et al (2002) Control of synaptic strength by glial TNFα. Science 295:2282–2285PubMedCrossRefPubMedCentralGoogle Scholar
  9. Binder DK, Yao X, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. GLIA 53:631–636PubMedCrossRefPubMedCentralGoogle Scholar
  10. Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Ann Rev Neurosci 35:203–225PubMedCrossRefPubMedCentralGoogle Scholar
  11. Clasadonte J, Dong J, Hines DJ, Haydon PG (2013) Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proc Natl Acad Sci USA 110:17540–17545PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55:585–595PubMedCrossRefPubMedCentralGoogle Scholar
  13. De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol 7:e1002293PubMedPubMedCentralCrossRefGoogle Scholar
  14. De Pittà M, Volman V, Berry H, Parpura V, Volterra A et al (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98PubMedPubMedCentralCrossRefGoogle Scholar
  15. Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365PubMedCrossRefPubMedCentralGoogle Scholar
  16. Feeney DM, Walker AE (1979) The prediction of posttraumatic epilepsy. A mathematical approach. Arch Neurol 36:8–12PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fisher RS, Pedley TA, Moody WJ, Prince DA (1976) The role of extracellular potassium in hippocampal epilepsy. Arch Neurol 33:76–83PubMedCrossRefPubMedCentralGoogle Scholar
  18. Florence CM, Baillie LD, Mulligan SJ (2012) Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS ONE 7:e51124PubMedPubMedCentralCrossRefGoogle Scholar
  19. Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibers of Loligo. J Physiol 131:341–376PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fritschy JM (2008) Epilepsy, E/I balance and GABAa receptor plasticity. Front Mol Neurosci 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  21. Frohlich F, Bazhenov M, Iragui-Madoz V, Sejnowski TJ (2008a) Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 14:422–433PubMedPubMedCentralCrossRefGoogle Scholar
  22. Frohlich F, Bazhenov M, Sejnowski TJ (2008b) Pathological effects of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci 28:1709–1720PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gomez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M et al (2010) An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Comput Biol 8:e1000352CrossRefGoogle Scholar
  24. Grand L, Ftomov S, Timofeev I (2013) Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals. J Neurosci Meth 212:237–241CrossRefGoogle Scholar
  25. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193PubMedCrossRefPubMedCentralGoogle Scholar
  26. Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2005) Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb Cortex 15:834–845PubMedCrossRefPubMedCentralGoogle Scholar
  27. Janigro D, Gasparini S, D’Ambrosio R, McKhann G, DiFrancesco D (1997) Reduction of K + uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J Neurosci 17:2813–2824PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jin BJ, Zhang H, Binder DK, Verkman AS (2012) Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J Gen Physiol 141:119–132CrossRefGoogle Scholar
  29. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG et al (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G et al (2014) Astrocytes contribute to gama oscillations and recognition memory. Proc Natl Acad Sci USA 111:E3343–E3352PubMedCrossRefPubMedCentralGoogle Scholar
  31. London M, Hausser M (2005) Dendritic computation. Ann Rev Neurosci 28:503–532PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lothman EW, Somjen GG (1976) Functions of primary afferents and responses of extracellular K + during spinal epileptiform seizures. Electroencephalogr Clin Neurophysiol 41:253–267PubMedCrossRefPubMedCentralGoogle Scholar
  33. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Ann Rev Physiol 63:815–846CrossRefGoogle Scholar
  34. McCrory P (2011) Sports concussion and the risk of chronic neurological impairment. Clin J Sport Med 21:6–12PubMedCrossRefPubMedCentralGoogle Scholar
  35. Metea MR, Kofuji P, Newman EA (2007) Neurovascular coupling is not mediated by potassium siphoning from glial cells. J Neurosci 27:2468–2471PubMedPubMedCentralCrossRefGoogle Scholar
  36. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci USA 102:5606–5611PubMedCrossRefPubMedCentralGoogle Scholar
  37. Nadkarni S, Jung P (2003) Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys Rev Lett 91:1–4CrossRefGoogle Scholar
  38. Nadkarni S, Bartol TM, Sejnowski TJ, Levine H (2010) Modelling vesicular release at hippocampal synapses. PLoS Comp Biol 6:e1000983CrossRefGoogle Scholar
  39. Nadkarni S, Bartol TM, Stevens CF, Sejnowski TJ, Levine H (2012) Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci USA 109:14657–14662PubMedCrossRefPubMedCentralGoogle Scholar
  40. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neurosci 129:905–913CrossRefGoogle Scholar
  41. Neary JT, Kang Y, Willoughby KA, Ellis EF (2002) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356CrossRefGoogle Scholar
  42. Ng LJ, Gibbons M, Phohomsiri P, Volman V, Cui J et al (2014) Investigation of the concussion mechanism: an end-to-end model that translates external measures to internal neurologic injury, Tampa, FLGoogle Scholar
  43. Oberheim NA, Tian GF, Han X, Peng W, Takano T et al (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276PubMedCrossRefPubMedCentralGoogle Scholar
  44. Oliet SHR, Mothet JP (2009) Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 158:275–283PubMedCrossRefPubMedCentralGoogle Scholar
  45. Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E et al (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLOS Comp Biol 5:e1000272CrossRefGoogle Scholar
  46. Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2011) Dependence of spontaneous neuronal firing and depolarization block on astroglial membrane transport mechanisms. J Comput NeurosciGoogle Scholar
  47. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634PubMedCrossRefPubMedCentralGoogle Scholar
  48. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92PubMedCrossRefPubMedCentralGoogle Scholar
  49. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S et al (1994) Glutamate-mediated astrocyte-neuron signaling. Nature 369:744–747PubMedCrossRefPubMedCentralGoogle Scholar
  50. Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898PubMedPubMedCentralCrossRefGoogle Scholar
  51. Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083–1086PubMedCrossRefPubMedCentralGoogle Scholar
  52. Rigg JL, Moonery SR (2011) Concussions and the military: issues specific to service members. PM R 3:S380–S386PubMedCrossRefPubMedCentralGoogle Scholar
  53. Rzigalinski BA, Weber JT, Willoughby KA, Ellis EF (1998) Intracellular free calcium dynamics in stretch-induced astrocytes. J Neurochem 70:2377–2385PubMedCrossRefPubMedCentralGoogle Scholar
  54. Savin C, Triesch J, Meyer-Hermann M (2009) Seizure induction by glia-mediated synaptic scaling. J R Soc Interface 6:655–668PubMedCrossRefPubMedCentralGoogle Scholar
  55. Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206PubMedCrossRefPubMedCentralGoogle Scholar
  56. Sibille J, Duc KD, Holcman D, Rouach N (2015) The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. PLoS Comp Biol 11: e1004137PubMedPubMedCentralCrossRefGoogle Scholar
  57. Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by glutamate release from astrocytes. Biol Cyber 98:61–74CrossRefGoogle Scholar
  58. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neurosci 129:877–896CrossRefGoogle Scholar
  59. Slemmer JE, Weber JT (2005) The extent of damage following repeated injury to cultured hippocampal cells is dependent on the severity of insult and inter-injury interval. Neurobiol Dis 18:421–431PubMedCrossRefPubMedCentralGoogle Scholar
  60. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–847PubMedPubMedCentralCrossRefGoogle Scholar
  61. Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426–C432PubMedCrossRefGoogle Scholar
  62. Somjen GG, Kager H, Wadman WJ (2009) Computer simulations of neuron-glial interactions mediated by ion flux. J Comput Neurosci 25:349–365CrossRefGoogle Scholar
  63. Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30:14685–14690PubMedPubMedCentralCrossRefGoogle Scholar
  64. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNFα. Nature 440:1054–1059PubMedCrossRefPubMedCentralGoogle Scholar
  65. Sun Q, Turrigiano GG (2011) PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down. J Neurosci 31:6800–6808PubMedPubMedCentralCrossRefGoogle Scholar
  66. Temkin NR, Haglund MM, Winn HR (1995) Causes, prevention, and treatment of post-traumatic epilepsy. New Horiz 3:518–522PubMedPubMedCentralGoogle Scholar
  67. Theye F, Mueller KA (2004) “Heads up”: concussions in high school sports. Clin Med Res 2:165–171PubMedPubMedCentralCrossRefGoogle Scholar
  68. Timofeev I, Bazhenov M, Avramescu S, Nita DA (2010) Posttraumatic epilepsy: the roles of synaptic plasticity. Neuroscientist 16:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  69. Timofeev I, Bazhenov M, Seigneur J, Sejnowski TJ (2012) Neuronal synchronization and thalamocortical rhythms in sleep, wake, and epilepsy. In: Noebels JLAM, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. Oxford University Press, New York, pp 157–175CrossRefGoogle Scholar
  70. Topolnik L, Steriade M, Timofeev I (2003) Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex 13:883–893PubMedCrossRefPubMedCentralGoogle Scholar
  71. Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94:719–723PubMedCrossRefPubMedCentralGoogle Scholar
  72. Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227PubMedCrossRefPubMedCentralGoogle Scholar
  73. Volman V, Ng LJ (2014) Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci 37:439–457PubMedCrossRefPubMedCentralGoogle Scholar
  74. Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19:303–326PubMedCrossRefPubMedCentralGoogle Scholar
  75. Volman V, Bazhenov M, Sejnowski TJ (2011a) Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proc Natl Acad Sci USA 108:15402–15407PubMedCrossRefPubMedCentralGoogle Scholar
  76. Volman V, Sejnowski TJ, Bazhenov M (2011b) Topological basis of epileptogenesis in a model of severe cortical trauma. J Neurophysiol 106:1933–1942PubMedPubMedCentralCrossRefGoogle Scholar
  77. Volman V, Behrens MM, Sejnowski TJ (2011c) Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci 31:18137–18148PubMedPubMedCentralCrossRefGoogle Scholar
  78. Volman V, Bazhenov M, Sejnowski TJ (2013) Divide and conquer: functional segregation of synaptic inputs by astrocytic microdomains could alleviate paroxysmal activity following brain trauma. PLoS Com Biol 9:e1002856CrossRefGoogle Scholar
  79. Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Intl 36:291–300CrossRefGoogle Scholar
  80. Wei Y, Ullah G, Ingram J, Schiff SJ (2014a) Oxygen and seizure dynamics: II. Computational modeling. J Neurophysiol 112:213–223PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wei Y, Ullah G, Schiff SJ (2014b) Unification of neuronal spikes, seizures, and spreading depression. J Neurosci 34:11733–11743PubMedPubMedCentralCrossRefGoogle Scholar
  82. Xie AX, Sun MY, Murphy T, Lauderdale K, Tiglao E et al (2012) Bidirectional scaling of astrocytic metabotropic glutamate receptor signaling following long-term changes in neuronal firing rates. PLoS ONE 7:e49637PubMedPubMedCentralCrossRefGoogle Scholar
  83. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y et al (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Progenity Inc.San DiegoUSA
  2. 2.Department of MedicineUniversity of CaliforniaSan DiegoUSA

Personalised recommendations