Advertisement

Defining Patient Specific Functional Parcellations in Lesional Cohorts via Markov Random Fields

  • Naresh Nandakumar
  • Niharika S. D’Souza
  • Jeff Craley
  • Komal Manzoor
  • Jay J. Pillai
  • Sachin K. Gujar
  • Haris I. Sair
  • Archana Venkataraman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11083)

Abstract

We propose a hierarchical Bayesian model that refines a population-based atlas using resting-state fMRI (rs-fMRI) coherence. Our method starts from an initial parcellation and then iteratively reassigns the voxel memberships at the subject level. Our algorithm uses a maximum a posteriori inference strategy based on the neighboring voxel assignments and the Pearson correlation coefficients between the voxel time series and the parcel reference signals. Our method is generalizable to different initial atlases, ensures spatial and temporal contiguity in the final network organization, and can handle subjects with brain lesions, whose rs-fMRI data varies tremendously from that of a healthy cohort. We validate our method by comparing the intra-network cohesion and the motor network identification against two baselines: a standard functional parcellation with no reassignment and a recently published method with a purely data-driven reassignment procedure. Our method outperforms the original functional parcellation in intra-network cohesion and both methods in motor network identification.

Keywords

Rs-fMRI Markov Random Field Patient-specific networks 

Notes

Acknowledgements

This work was supported by the RSNA Research & Education Foundation Carestream Health RSNA Research Scholar Grant; Contract grant number: RSCH1420.

References

  1. 1.
    Lee, W.H., Frangou, S.: Linking functional connectivity and dynamic properties of resting-state networks. Sci. Rep. 7(1), 16610 (2017)CrossRefGoogle Scholar
  2. 2.
    Sair, H.I., et al.: Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI. Hum. Brain Mapp. 37(3), 913–923 (2016)CrossRefGoogle Scholar
  3. 3.
    Duffau, H.: Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 4(8), 476–486 (2005)CrossRefGoogle Scholar
  4. 4.
    Blumensath, T., Jbabdi, S., et al.: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Neuroimage 76, 313–324 (2013)CrossRefGoogle Scholar
  5. 5.
    Craddock, R.C., et al.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)CrossRefGoogle Scholar
  6. 6.
    Wang, D., et al.: Parcellating cortical functional networks in individuals. Nat. Neurosci. 18(12), 1853 (2015)CrossRefGoogle Scholar
  7. 7.
    Venkataraman, A., et al.: Bayesian community detection in the space of group-level functional differences. IEEE Trans. Med. Imaging 35(8), 1866–1882 (2016)CrossRefGoogle Scholar
  8. 8.
    Ryali, S.: A parcellation scheme based on von Mises-fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. NeuroImage 65, 83–96 (2013)CrossRefGoogle Scholar
  9. 9.
    Thomas, B., Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)CrossRefGoogle Scholar
  10. 10.
    Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and variational inference. Found. Trends® Mach. Learn. 1(1–2), 1–305 (2008)zbMATHGoogle Scholar
  11. 11.
    Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Behzadi, Y., et al.: A component based noise correction method (compcor) for bold and perfusion based fMRI. Neuroimage 37(1), 90–101 (2007)CrossRefGoogle Scholar
  13. 13.
    Jack Jr., C.R., et al.: Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190(1), 85–92 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Naresh Nandakumar
    • 1
  • Niharika S. D’Souza
    • 1
  • Jeff Craley
    • 1
  • Komal Manzoor
    • 2
  • Jay J. Pillai
    • 2
  • Sachin K. Gujar
    • 2
  • Haris I. Sair
    • 2
  • Archana Venkataraman
    • 1
  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of NeuroradiologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations