Multi-view Outlier Detection

  • Zhengming DingEmail author
  • Handong Zhao
  • Yun Fu
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Identifying different types of multi-view data outliers with abnormal behaviors is an interesting yet challenging unsupervised learning task, due to the complicated data distributions across different views. Conventional approaches achieve this by learning a new latent feature representation with the pairwise constraint on different view data. We argue that the existing methods are expensive in generalizing their models from two-view data to three-view (or more) data, in terms of the number of introduced variables and detection performance. In this chapter, we propose a novel multi-view outlier detection method with a consensus regularization on the latent representations.


  1. Achanta R, Hemami SS, Estrada FJ, Süsstrunk S (2009) Frequency-tuned salient region detection. In: IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 1597– 1604Google Scholar
  2. Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey. Data Min Knowl Discov 29(3):626–688MathSciNetCrossRefGoogle Scholar
  3. Alvarez AM, Yamada M, Kimura A, Iwata T (2013) Clustering-based anomaly detection in multi-view data. In: ACM international conference on conference on information and knowledge management (CIKM), pp 1545–1548Google Scholar
  4. Boiman O, Irani M (2007) Detecting irregularities in images and in video. Int J Comput Vis (IJCV) 74(1):17–31CrossRefGoogle Scholar
  5. Cai X, Nie F, Huang H (2013) Multi-view k-means clustering on big data. In: Proceedings of international joint conference on artificial intelligence (IJCAI)Google Scholar
  6. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):11MathSciNetCrossRefGoogle Scholar
  7. Castillo C, Donato D, Gionis A, Murdock V, Silvestri F (2007) Know your neighbors: web spam detection using the web topology. In: ACM SIGIR conference on research and development in information retrieval (SIGIR), pp 423–430Google Scholar
  8. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3)CrossRefGoogle Scholar
  9. Cheng M-M, Mitra NJ, Huang X, Torr PHS, Hu S-M (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582CrossRefGoogle Scholar
  10. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  11. Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3449–3456Google Scholar
  12. Cong Y, Yuan J, Liu J (2013) Abnormal event detection in crowded scenes using sparse representation. Pattern Recognit 46(7):1851–1864CrossRefGoogle Scholar
  13. Cong Y, Yuan J, Tang Y (2013) Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans Inf Forensics Secur 8(10):1590–1599CrossRefGoogle Scholar
  14. Das S, Matthews BL, Srivastava AN, Oza NC (2010) Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study. In: ACM SIGKDD international conference on knowledge discovery and data mining (KDD), pp 47–56Google Scholar
  15. Dieh CP, Hampshire II JB (2002) Real-time object classification and novelty detection for collaborative video surveillance. In: Proceedings of international joint conference on neural networks (IJCNN), pp 2620–2625Google Scholar
  16. Ding Z, Fu Y (2014) Low-rank common subspace for multi-view learning. In: IEEE international conference on data mining. IEEE, pp 110–119Google Scholar
  17. Ding Z, Fu Y (2016) Robust multi-view subspace learning through dual low-rank decompositions. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. AAAI Press, pp 1181–1187Google Scholar
  18. Feichtinger HG, Strohmer T (1998) Gabor analysis and algorithms: theory and applications. Birkhauser, BaselCrossRefGoogle Scholar
  19. Gao J, Fan W, Turaga DS, Parthasarathy S, Han J (2011) A spectral framework for detecting inconsistency across multi-source object relationships. In: IEEE International Conference on Data Mining (ICDM), pp 1050–1055Google Scholar
  20. Gao J, Du N, Fan W, Turaga D, Parthasarathy S, Han J (2013) A multi-graph spectral framework for mining multi-source anomalies. Graph embedding for pattern analysis. Springer, New York, pp 205–228CrossRefGoogle Scholar
  21. He Z, Xu X, Deng S (2003) Discovering cluster-based local outliers. Pattern Recognit Lett 24(9–10):1641–1650CrossRefGoogle Scholar
  22. He Z, Xu X, Deng S (2005) An optimization model for outlier detection in categorical data. CoRR arXiv:0503081
  23. Huang D, Sun J, Wang Y (2012) The buaa-visnir face database instructions. IRIP-TR-12-FR-001. Beijing University of Aeronautics and Astronautics, ChinaGoogle Scholar
  24. Janeja VP, Palanisamy R (2013) Multi-domain anomaly detection in spatial datasets. Knowl Inf Syst 36(3):749–788CrossRefGoogle Scholar
  25. Ju F, Sun Y, Gao J, Hu Y, Yin B (2015) Image outlier detection and feature extraction via l1-norm-based 2d probabilistic PCA. IEEE Trans Image Process (TIP) 24(12):4834–4846MathSciNetCrossRefGoogle Scholar
  26. Lee YJ, Kim J, Grauman K (2011) Key-segments for video object segmentation. In: IEEE international conference on computer vision, ICCV, pp 1995–2002Google Scholar
  27. Li X, Lu H, Zhang L, Ruan X, Yang M (2013) Saliency detection via dense and sparse reconstruction. In: IEEE international conference on computer vision, ICCV, pp 2976– 2983Google Scholar
  28. Li S, Shao M, Fu Y (2015) Multi-view low-rank analysis for outlier detection. In: SIAM international conference on data mining (SDM)Google Scholar
  29. Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. CoRR arXiv:1009.5055
  30. Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. In: ICCV, pp 1615–1622Google Scholar
  31. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367CrossRefGoogle Scholar
  32. Liu G, Xu H, Yan S (2012) Exact subspace segmentation and outlier detection by low-rank representation. In: International conference on artificial intelligence and statistics (AISTATS), pp 703–711Google Scholar
  33. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRefGoogle Scholar
  34. Lu S, Mahadevan V, Vasconcelos N (2014) Learning optimal seeds for diffusion-based salient object detection. In: IEEE conference on computer vision and pattern recognition, CVPR, pp 2790–2797Google Scholar
  35. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, pp 281–297Google Scholar
  36. McCallum A, Freitag D, Pereira FCN (2000) Maximum entropy markov models for information extraction and segmentation. In: Proceedings of the seventeenth international conference on machine learning (ICML), pp 591–598Google Scholar
  37. Müller E, Assent I, Sanchez PI, Mülle Y, Böhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: IEEE international conference on data mining, (ICDM), pp 529–538Google Scholar
  38. Nie F, Huang H, Cai X, Ding CHQ (2010) Efficient and robust feature selection via joint l2, 1–norms minimization. In: Advances in neural information processing systems (NIPS), pp 1813–1821Google Scholar
  39. Otey ME, Ghoting A, Parthasarathy S (2006) Fast distributed outlier detection in mixed-attribute data sets. Data Min Knowl Discov 12(2–3):203–228MathSciNetCrossRefGoogle Scholar
  40. Peng H, Li B, Ji R, Hu W, Xiong W, Lang C (2013) Salient object detection via low-rank and structured sparse matrix decomposition. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence, (AAAI)Google Scholar
  41. Radovanovic M, Nanopoulos A, Ivanovic M (2015) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng 27(5):1369–1382CrossRefGoogle Scholar
  42. Rätsch G, Mika S, Schölkopf B, Müller K (2002) Constructing boosting algorithms from SVMs: an application to one-class classification. IEEE Trans Pattern Anal Mach Intell 24(9):1184–1199CrossRefGoogle Scholar
  43. Rother C, Kolmogorov V, Blake A (2004) “grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314CrossRefGoogle Scholar
  44. Salvador S, Chan P, Brodie J (2004) Learning states and rules for time series anomaly detection. Technical report CS-2003-05, Department of Computer Sciences, Florida Institute of TechnologyGoogle Scholar
  45. Shen X Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 853–860Google Scholar
  46. Simoncelli EP, Freeman WT (1995) The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of international conference on image processing (ICIP), 444–447Google Scholar
  47. Stefano CD, Sansone C, Vento M (2000) To reject or not to reject: that is the question-an answer in case of neural classifiers. IEEE Trans Syst Man Cybern Part C 30(1):84–94CrossRefGoogle Scholar
  48. Tibshirani R, Walther G, Hastie T (2000) Estimating the number of clusters in a dataset via the gap statistic. J R Stat Soc Ser B 63:411–423CrossRefGoogle Scholar
  49. Wu J, Liu H, Xiong H, Cao J, Chen J (2015) K-means-based consensus clustering: a unified view. IEEE Trans Knowl Data Eng 27(1):155–169CrossRefGoogle Scholar
  50. Xiong L, Chen X, Schneider JG (2011) Direct robust matrix factorizaion for anomaly detection. In: IEEE international conference on data mining, (ICDM), pp 844–853Google Scholar
  51. Xu H, Caramanis C, Sanghavi S (2010) Robust PCA via outlier pursuit. Advances in neural information processing systems (NIPS), pp 2496–2504Google Scholar
  52. Xu C, Tao D, Xu C (2013) A survey on multi-view learning. CoRR arXiv:1304.5634
  53. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J Imaging Sci (SIIMS) 2(2):569–592MathSciNetCrossRefGoogle Scholar
  54. Zhai S, Cheng Y, Lu W, Zhang Z (2016) Deep structured energy based models for anomaly detection. In: Proceedings of the 33rd international conference on machine learning (ICML), pp 1100–1109Google Scholar
  55. Zhao H, Fu Y (2015a) Dual-regularized multi-view outlier detection. In: Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI, pp 4077–4083Google Scholar
  56. Zhao H, Fu Y (2015b) Semantic single video segmentation with robust graph representation. In: Proceedings of the twenty-fourth international joint conference on artificial intelligence (IJCAI), pp 2219–2226Google Scholar
  57. Zhao R, Ouyang W, Li H, Wang X (2015) Saliency detection by multi-context deep learning. In: IEEE conference on computer vision and pattern recognition, CVPRGoogle Scholar
  58. Zhou Z, Li X, Wright J, Candès EJ, Ma Y (2010) Stable principal component pursuit. In: IEEE international symposium on information theory (ISIT), pp 1518–1522Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indiana University-Purdue University IndianapolisIndianapolisUSA
  2. 2.Adobe ResearchSan JoseUSA
  3. 3.Northeastern UniversityBostonUSA

Personalised recommendations