Multi-view Clustering with Complete Information

  • Zhengming DingEmail author
  • Handong Zhao
  • Yun Fu
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Multi-view Clustering (MVC) has garnered more attention recently since many real-world data are comprised of different representations or views. The key is to explore complementary information to benefit the clustering problem. In this chapter, we consider the conventional complete-view scenario. Specifically, in the first section, we present a deep matrix factorization framework for MVC, where semi-nonnegative matrix factorization is adopted to learn the hierarchical semantics of multi-view data in a layer-wise fashion. In the second section, we make an extension and consider the different sampled feature sets as multi-view data. We propose a novel graph-based method, Ensemble Subspace Segmentation under Block-wise constraints (ESSB), which is jointly formulated in the ensemble learning framework.


  1. Abdala DD, Wattuya P, Jiang X (2010) Ensemble clustering via random walker consensus strategy. In: ICPR, pp 1433–1436Google Scholar
  2. Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. TPAMI 28(12):2037–2041zbMATHCrossRefGoogle Scholar
  3. Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: ICML, pp 1247–1255Google Scholar
  4. Ayad H, Kamel MS (2008) Cumulative voting consensus method for partitions with variable number of clusters. IEEE Trans Pattern Anal Mach Intell 30(1):160–173CrossRefGoogle Scholar
  5. Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127MathSciNetzbMATHCrossRefGoogle Scholar
  6. Burkard R, Dell’Amico M, Martello S (2009) Assignment problems. Society for Industrial and Applied Mathematics, PhiladelphiazbMATHCrossRefGoogle Scholar
  7. Cai X, Nie F, Huang H (2013a) Multi-view k-means clustering on big data. In: AAAI, pp 2598–2604Google Scholar
  8. Cai X, Nie F, Huang H (2013b) Multi-view k-means clustering on big data. In: IJCAIGoogle Scholar
  9. Cao X, Zhang C, Fu H, Liu S, Zhang H (2015) Diversity-induced multi-view subspace clustering. In: CVPR, pp 586–594Google Scholar
  10. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27zbMATHCrossRefGoogle Scholar
  11. de Sa VR (2005) Spectral clustering with two views. In: ICML, pp 20–27Google Scholar
  12. Ding CHQ, Li T, Jordan MI (2010) Convex and semi-nonnegative matrix factorizations. TPAMI 32(1):45–55Google Scholar
  13. Ding Z, Fu Y (2014) Low-rank common subspace for multi-view learning. In: ICDM, pp 110–119Google Scholar
  14. Ding Z, Fu Y (2016) Robust multi-view subspace learning through dual low-rank decompositions. In: AAAI, pp 1181–1187Google Scholar
  15. Ding Z, Shao M, Fu Y (2014) Latent low-rank transfer subspace learning for missing modality recognition. In: AAAIGoogle Scholar
  16. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: CVPR, pp 2790–2797Google Scholar
  17. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781CrossRefGoogle Scholar
  18. Feichtinger HG, Strohmer T (1998) Gabor analysis and algorithms: theory and applications. Applied and numerical harmonic analysis. Birkhuser, BostonzbMATHCrossRefGoogle Scholar
  19. Feng J, Lin Z, Xu H, Yan S (2014) Robust subspace segmentation with block-diagonal prior. In CVPR, pp 3818–3825Google Scholar
  20. Filkov V, Skiena S (2004) Integrating microarray data by consensus clustering. Int J Artif Intell Tools 13(4):863–880zbMATHCrossRefGoogle Scholar
  21. Fred ALN, Jain AK (2005) Combining multiple clusterings using evidence accumulation, pp 835–850CrossRefGoogle Scholar
  22. Gao H, Nie F, Li X, Huang H (2015) Multi-view subspace clustering. In: ICCV, pp 4238–4246Google Scholar
  23. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRefGoogle Scholar
  24. Gionis A, Mannila H, Tsaparas P (2007) Clustering aggregation. ACM Trans Knowl Discov Data 1(1):1–30CrossRefGoogle Scholar
  25. Goder A, Filkov V (2008) Consensus clustering algorithms: comparison and refinement. In: Proceedings of the tenth workshop on algorithm engineering and experiments, ALENEX, pp 109–117Google Scholar
  26. Guan N, Tao D, Luo Z, Yuan B (2011) Non-negative patch alignment framework. IEEE Trans Neural Netw 22(8):1218–1230CrossRefGoogle Scholar
  27. Guan N, Tao D, Luo Z, Yuan B (2012) Nenmf: an optimal gradient method for nonnegative matrix factorization. TSP 60(6):2882–2898MathSciNetzbMATHGoogle Scholar
  28. He X, Niyogi P (2003) Locality preserving projections. In: Neural information processing systems, vol 16, p 153Google Scholar
  29. Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory Appl 4(5):303–320MathSciNetzbMATHCrossRefGoogle Scholar
  30. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507MathSciNetzbMATHCrossRefGoogle Scholar
  31. Hu H, Lin Z, Feng J, Zhou J (2014) Smooth representation clustering. In: CVPR, pp 3834–3841Google Scholar
  32. Jebara T, Wang J, Chang S-F (2009) Graph construction and b-matching for semi-supervised learning. In: ICML, pp 441–448Google Scholar
  33. Kumar A, Daume III H (2011) A co-training approach for multi-view spectral clustering. In: ICML, pp 393–400Google Scholar
  34. Kumar A, Rai P, Daume III H (2011) Co-regularized multi-view spectral clustering. In: NIPS, pp 1413–1421Google Scholar
  35. Lee M, Lee J, Lee H, Kwak N (2015) Membership representation for detecting block-diagonal structure in low-rank or sparse subspace clustering. In: CVPRGoogle Scholar
  36. Li S, Fu Y (2013) Low-rank coding with b-matching constraint for semi-supervised classification. In: IJCAIGoogle Scholar
  37. Li C-G, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: CVPRGoogle Scholar
  38. Li T, Ding CHQ, Jordan MI (2007) Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In: ICDM, pp 577–582Google Scholar
  39. Li J, Kong Y, Fu Y (2017) Sparse subspace clustering by learning approximation \(\ell _0\) codes. In: AAAIGoogle Scholar
  40. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: ICML, pp 663–670Google Scholar
  41. Liu R, Lin Z, la Torre FD, Su Z (2012) Fixed-rank representation for unsupervised visual learning. In: CVPR, pp 598–605Google Scholar
  42. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRefGoogle Scholar
  43. Liu J, Wang C, Gao J, Han J (2013) Multi-view clustering via joint nonnegative matrix factorization. In: SDM, pp 252–260Google Scholar
  44. Liu H, Liu T, Wu J, Tao D, Fu Y (2015) Spectral ensemble clustering. In KDDGoogle Scholar
  45. Liu H, Shao M, Li S, Fu Y (2016) Infinite ensemble for image clustering. In: KDDGoogle Scholar
  46. Li Y, Yu J, Hao P, Li Z (2007) Clustering ensembles based on normalized edges. In: PAKDD, pp 664–671Google Scholar
  47. Li B, Zhang Y, Lin Z, Lu H (2015) Subspace clustering by mixture of gaussian regression. In: CVPRGoogle Scholar
  48. Lu C-Y, Min H, Zhao Z-Q, Zhu L, Huang D-S, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In ECCV, pp 347–360Google Scholar
  49. Lu C-Y, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: ICCV, pp 1345–1352Google Scholar
  50. Luo D, Nie F, Ding C, Huang H (2011) Multi-subspace representation and discovery, pp 405–420CrossRefGoogle Scholar
  51. Nene SA, Nayar SK, Murase H (1996) Columbia object image library (coil-20). Technical Report CUCS-005-96Google Scholar
  52. Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: Analysis and an algorithm. In: NIPS, pp 849–856Google Scholar
  53. Powell MJD (1969) A method for nonlinear constraints in minimization problems. Optimization. Academic Press, New York, pp 283–298Google Scholar
  54. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRefGoogle Scholar
  55. Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. In: WACV, pp 138–142Google Scholar
  56. Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint. Int J Comput Vis 109(1–2):74–93MathSciNetzbMATHCrossRefGoogle Scholar
  57. Steinwart I (2015) Fully adaptive density-based clustering. Ann Stat 43(5):2132–2167MathSciNetzbMATHCrossRefGoogle Scholar
  58. Strehl A, Ghosh J (2002) Cluster ensembles – a knowledge reuse framework for combining multiple partitions, pp 583–617Google Scholar
  59. Tao Z, Liu H, Li S, Fu Y (2016) Robust spectral ensemble clustering. In: CIKM, pp 367–376Google Scholar
  60. Topchy AP, Jain AK, Punch WF (2003) Combining multiple weak clusterings. In: ICDM, pp 331–338Google Scholar
  61. Topchy AP, Jain AK, Punch WF (2004) A mixture model for clustering ensembles. In: CDM, pp 379–390Google Scholar
  62. Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller BW (2014) A deep semi-nmf model for learning hidden representations. In: ICML, pp 1692–1700Google Scholar
  63. Tron R, Vidal R (2007) A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPRGoogle Scholar
  64. Vega-Pons S, Ruiz-Shulcloper J (2011) A survey of clustering ensemble algorithms. IJPRAI 25(3):337–372MathSciNetGoogle Scholar
  65. Vega-Pons S, Correa-Morris J, Ruiz-Shulcloper J (2010) Weighted partition consensus via kernels. Pattern Recognit 43(8):2712–2724zbMATHCrossRefGoogle Scholar
  66. Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28(2):52–68CrossRefGoogle Scholar
  67. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416MathSciNetCrossRefGoogle Scholar
  68. Wang X, Yang C, Zhou J (2009) Clustering aggregation by probability accumulation. Pattern Recognit 42(5):668–675zbMATHCrossRefGoogle Scholar
  69. Wang S, Yuan X, Yao T, Yan S, Shen J (2011) Efficient subspace segmentation via quadratic programming. In: AAAIGoogle Scholar
  70. Wang W, Arora R, Livescu K, Bilmes J (2015) On deep multi-view representation learning. In: ICMLGoogle Scholar
  71. Wang S, Ding Z, Fu Y (2016) Coupled marginalized auto-encoders for cross-domain multi-view learning. In: IJCAI, pp 2125–2131Google Scholar
  72. Wu J, Liu H, Xiong H, Cao J, Chen J (2015) K-means-based consensus clustering: a unified view. IEEE Trans Knowl Data Eng 27(1):155–169CrossRefGoogle Scholar
  73. Xu J, Han J, Nie F (2016) Discriminatively embedded k-means for multi-view clustering. In: CVPRGoogle Scholar
  74. Xu C, Tao D, Xu C (2013) A survey on multi-view learning, CoRR arxiv:1304.5634
  75. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRefGoogle Scholar
  76. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J Imaging Sci 2(2):569–592MathSciNetzbMATHCrossRefGoogle Scholar
  77. Zhang Y, Xu C, Lu H, Huang Y (2009) Character identification in feature-length films using global face-name matching. TMM 11(7):1276–1288Google Scholar
  78. Zhang X, Zhao L, Zong L, Liu X, Yu H (2014) Multi-view clustering via multi-manifold regularized nonnegative matrix factorization. In: ICDM, pp 1103–1108Google Scholar
  79. Zhang X, Zong L, Liu X, Yu H (2015) Constrained nmf-based multi-view clustering on unmapped data. In: AAAI, pp 3174–3180Google Scholar
  80. Zhao H, Fu Y (2015) Dual-regularized multi-view outlier detection. In: IJCAI, pp 4077–4083Google Scholar
  81. Zhao H, Ding Z, Fu Y (2015) Block-wise constrained sparse graph for face image representation. In: FGGoogle Scholar
  82. Zhao H, Ding Z, Shao M, Fu Y (2015) Part-level regularized semi-nonnegative coding for semi-supervised learning. In: ICDM, pp 1123–1128Google Scholar
  83. Zhao H, Liu H, Fu Y (2016) Incomplete multi-modal visual data grouping. In: IJCAI, pp 2392–2398Google Scholar
  84. Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. TIP 20(5):1327–1336MathSciNetzbMATHGoogle Scholar
  85. Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012) Non-negative low rank and sparse graph for semi-supervised learning. In: CVPR, pp 2328–2335Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indiana University-Purdue University IndianapolisIndianapolisUSA
  2. 2.Adobe ResearchSan JoseUSA
  3. 3.Northeastern UniversityBostonUSA

Personalised recommendations