Advertisement

Treatment Planning, Outcome Assessment, and Upper Airway Imaging Using CBCT in Clinical Orthodontics

  • Juan Martin PalomoEmail author
  • Hakan El
  • Neda Stefanovic
  • Rany Bous
  • Tarek Elshebiny
Chapter

Abstract

The cone-beam computed tomography scan provides additional information that can be used not only for diagnosis but also for treatment planning and outcome assessment. This chapter will introduce some novel methods of 3D analysis not possible with 2D radiography, which can be easily incorporated right away in clinic orthodontics. Some of these measurements, such as the transverse analysis, have been shown to significantly improve the quality of treatment. In other words, the more we know, the more control we have, and the better result we can achieve.

Keywords

airway transverse CBCT cone-beam computed tomography voxel superimposition voxel-based superimposition 3D Superimposition 

References

  1. 1.
    van Vlijmen OJ, Kuijpers MA, Berge SJ, Schols JG, Maal TJ, Breuning H, et al. Evidence supporting the use of cone-beam computed tomography in orthodontics. J Am Dent Assoc. 2012;143:241–52.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Palomo JM, El H, Palomo LB, Strohl KP. Upper airway, cranial morphology, and sleep apnea. In: Graber TM, Vanarsdall RL, KWL V, GJH H, editors. Orthodontics: current principles and techniques. St. Louis, MO: Elsevier; 2017. p. x, 1016.Google Scholar
  3. 3.
    Meyer W. On adenoid vegetations in the naso-pharyngeal cavity: their pathology, diagnosis, and treatment. Med Chir Trans. 1870;53:191–216 191.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Angle EH. Malocclusion of the teeth. Philadelphia, PA: S.S. White Dental Mfg. Co.; 1907.Google Scholar
  5. 5.
    Aboudara C, Nielsen I, Huang JC, Maki K, Miller AJ, Hatcher D. Comparison of airway space with conventional lateral headfilms and 3-dimensional reconstruction from cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;135:468–79.CrossRefGoogle Scholar
  6. 6.
    Avrahami E, Englender M. Relation between CT axial cross-sectional area of the oropharynx and obstructive sleep apnea syndrome in adults. AJNR Am J Neuroradiol. 1995;16:135–40.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ogawa T, Enciso R, Shintaku WH, Clark GT. Evaluation of cross-section airway configuration of obstructive sleep apnea. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:102–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Mull RT. Mass estimates by computed tomography: physical density from CT numbers. AJR Am J Roentgenol. 1984;143:1101–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol. 2010;39:323–35.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:20140224.CrossRefGoogle Scholar
  11. 11.
    El H, Palomo JM. Measuring the airway in 3 dimensions: a reliability and accuracy study. Am J Orthod Dentofac Orthop. 2010;137:S50 e51–9. discussion S50–2Google Scholar
  12. 12.
    El H, Palomo JM. Airway volume for different dentofacial skeletal patterns. Am J Orthod Dentofac Orthop. 2011;139:e511–21.CrossRefGoogle Scholar
  13. 13.
    Sutera SP, Skalak R. The history of Poiseuille's law. Annu Rev Fluid Mech. 1993;25:1–19.CrossRefGoogle Scholar
  14. 14.
    Hatcher DC. Cone beam computed tomography: craniofacial and airway analysis. Dent Clin N Am. 2012;56:343–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Schwab RJ, Gefter WB, Hoffman EA, Gupta KB, Pack AI. Dynamic upper airway imaging during awake respiration in normal subjects and patients with sleep disordered breathing. Am Rev Respir Dis. 1993;148:1385–400.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwab RJ, Gefter WB, Pack AI, Hoffman EA. Dynamic imaging of the upper airway during respiration in normal subjects. J Appl Physiol (1985). 1993;74:1504–14.CrossRefGoogle Scholar
  17. 17.
    Battagel JM, Johal A, Smith AM, Kotecha B. Postural variation in oropharyngeal dimensions in subjects with sleep disordered breathing: a cephalometric study. Eur J Orthod. 2002;24:263–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Malhotra A, Pillar G, Fogel R, Beauregard J, Edwards J, White DP. Upper-airway collapsibility: measurements and sleep effects. Chest. 2001;120:156–61.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bell WH. Modern practice in orthognathic and reconstructive surgery. St. Louis: W B Saunders Co; 1992.Google Scholar
  20. 20.
    Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG. Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofac Orthop. 2008;134:573–82.CrossRefGoogle Scholar
  21. 21.
    Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farman AG. Linear accuracy of cone beam CT derived 3D images. Angle Orthod. 2009;79:150–7.CrossRefGoogle Scholar
  22. 22.
    Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:534–42.CrossRefGoogle Scholar
  23. 23.
    Kau CH. Creation of the virtual patient for the study of facial morphology. Facial Plast Surg Clin North Am. 2011;19:615–22. viiiPubMedCrossRefGoogle Scholar
  24. 24.
    Tanner JM, Weiner JS. The reliability of the photogrammetric method of anthropometry, with a description of a miniature camera technique. Am J Phys Anthropol. 1949;7:145–86.PubMedCrossRefGoogle Scholar
  25. 25.
    Kau CH, Richmond S, Incrapera A, English J, Xia JJ. Three-dimensional surface acquisition systems for the study of facial morphology and their application to maxillofacial surgery. Int J Med Robot. 2007;3:97–110.PubMedCrossRefGoogle Scholar
  26. 26.
    Oy P. Planmeca ProFace. Helsinki: Planmeca; 2017.Google Scholar
  27. 27.
    Plooij JM, Maal TJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Berge SJ. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg. 2011;40:341–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Cope JB. Temporary anchorage devices in orthodontics: a paradigm shift. Seminars in orthodontics. Amsterdam: Elsevier; 2005. p. 3–9.Google Scholar
  29. 29.
    Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod. 1997;31:763–7.PubMedGoogle Scholar
  30. 30.
    Melsen B. Mini-implants: where are we? J Clin Orthod. 2005;39:539–47. quiz 531–2PubMedPubMedCentralGoogle Scholar
  31. 31.
    Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:e6–15.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Nucera R, Lo Giudice A, Bellocchio AM, Spinuzza P, Caprioglio A, Perillo L, et al. Bone and cortical bone thickness of mandibular buccal shelf for mini-screw insertion in adults. Angle Orthod. 2017;87(5):745–51.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Papadopoulos MA, Papageorgiou SN, Zogakis IP. Clinical effectiveness of orthodontic miniscrew implants: a meta-analysis. J Dent Res. 2011;90:969–76.PubMedCrossRefGoogle Scholar
  34. 34.
    Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofac Orthop. 2012;142:577–95. e577CrossRefGoogle Scholar
  35. 35.
    Landin M, Jadhav A, Yadav S, Tadinada A. A comparative study between currently used methods and small volume-cone beam tomography for surgical placement of mini implants. Angle Orthod. 2015;85:446–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Brisceno CE, Rossouw PE, Carrillo R, Spears R, Buschang PH. Healing of the roots and surrounding structures after intentional damage with miniscrew implants. Am J Orthod Dentofac Orthop. 2009;135:292–301.CrossRefGoogle Scholar
  37. 37.
    Hembree M, Buschang PH, Carrillo R, Spears R, Rossouw PE. Effects of intentional damage of the roots and surrounding structures with miniscrew implants. Am J Orthod Dentofac Orthop. 2009;135:280–9. discussion 280–1.CrossRefGoogle Scholar
  38. 38.
    Abbassy MA, Sabban HM, Hassan AH, Zawawi KH. Evaluation of mini-implant sites in the posterior maxilla using traditional radiographs and cone-beam computed tomography. Saudi Med J. 2015;36:1336–41.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Jung BA, Wehrbein H, Heuser L, Kunkel M. Vertical palatal bone dimensions on lateral cephalometry and cone-beam computed tomography: implications for palatal implant placement. Clin Oral Implants Res. 2011;22:664–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Jung BA, Wehrbein H, Wagner W, Kunkel M. Preoperative diagnostic for palatal implants: is CT or CBCT necessary? Clin Implant Dent Relat Res. 2012;14:400–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim SH, Kang SM, Choi YS, Kook YA, Chung KR, Huang JC. Cone-beam computed tomography evaluation of mini-implants after placement: is root proximity a major risk factor for failure? Am J Orthod Dentofac Orthop. 2010;138:264–76.CrossRefGoogle Scholar
  42. 42.
    Shinohara A, Motoyoshi M, Uchida Y, Shimizu N. Root proximity and inclination of orthodontic mini-implants after placement: cone-beam computed tomography evaluation. Am J Orthod Dentofac Orthop. 2013;144:50–6.CrossRefGoogle Scholar
  43. 43.
    Marquezan M, Osório A, Sant'Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res. 2012;23:767–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Kapila SD, Nervina JM. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol. 2015;44:20140282.CrossRefGoogle Scholar
  45. 45.
    Alsamak S, Psomiadis S, Gkantidis N. Positional guidelines for orthodontic mini-implant placement in the anterior alveolar region: a systematic review. Int J Oral Maxillofac Implants. 2013;28:470–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Baumgaertel S. Cortical bone thickness and bone depth of the posterior palatal alveolar process for mini-implant insertion in adults. Am J Orthod Dentofac Orthop. 2011;140:806–11.CrossRefGoogle Scholar
  47. 47.
    Baumgaertel S, Hans MG. Assessment of infrazygomatic bone depth for mini-screw insertion. Clin Oral Implants Res. 2009;20:638–42.PubMedGoogle Scholar
  48. 48.
    de Rezende Barbosa GL, Ramirez-Sotelo LR, Tavora DM, Almeida SM. Comparison of median and paramedian regions for planning palatal mini-implants: a study in vivo using cone beam computed tomography. Int J Oral Maxillofac Surg. 2014;43:1265–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Fayed MM, Pazera P, Katsaros C. Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography. Angle Orthod. 2010;80:939–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Kalra S, Tripathi T, Rai P, Kanase A. Evaluation of orthodontic mini-implant placement: a CBCT study. Prog Orthod. 2014;15:61.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Moslemzadeh SH, Sohrabi A, Rafighi A, Kananizadeh Y, Nourizadeh A. Evaluation of interdental spaces of the mandibular posterior area for orthodontic mini-implants with cone-beam computed tomography. J Clin Diagn Res. 2017;11:Zc09–12.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pan F, Kau CH, Zhou H, Souccar N. The anatomical evaluation of the dental arches using cone beam computed tomography—an investigation of the availability of bone for placement of mini-screws. Head Face Med. 2013;9:13.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Watanabe H, Deguchi T, Hasegawa M, Ito M, Kim S, Takano-Yamamoto T. Orthodontic miniscrew failure rate and root proximity, insertion angle, bone contact length, and bone density. Orthod Craniofac Res. 2013;16:44–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Palomo JMVM, Hans MG. Cone beam computed tomography in orthodontics: indications, insights, and innovations. Ames, IA: John Wiley & Sons; 2014.Google Scholar
  55. 55.
    Casko JS, Vaden JL, Kokich VG, Damone J, James RD, Cangialosi TJ, et al. Objective grading system for dental casts and panoramic radiographs. Am J Orthod Dentofacial Orthop. 1998;114:589–99.PubMedCrossRefGoogle Scholar
  56. 56.
    Sawchuk D, Currie K, Vich ML, Palomo JM, Flores-Mir C. Diagnostic methods for assessing maxillary skeletal and dental transverse deficiencies: a systematic review. Korean J Orthod. 2016;46:331–42.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Proffit WRSD, Fields HW. Contemporary orthodontics. St. Louis, MO: Mosby; 2007.Google Scholar
  58. 58.
    Betts NJ, Vanarsdall RL, Barber HD, Higgins-Barber K, Fonseca RJ. Diagnosis and treatment of transverse maxillary deficiency. Int J Adult Orthodon Orthognath Surg. 1995;10:75–96.PubMedGoogle Scholar
  59. 59.
    Enlow DHHM. Essentials of facial growth. Ann Arbor, MI: Needham Press; 2008.Google Scholar
  60. 60.
    Solow B. The dentoalveolar compensatory mechanism: background and clinical implications. Br J Orthod. 1980;7:145–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Miner RM, Al Qabandi S, Rigali PH, Will LA. Cone-beam computed tomography transverse analysis. Part I: normative data. Am J Orthod Dentofac Orthop. 2012;142:300–7.CrossRefGoogle Scholar
  62. 62.
    Cheung G, Goonewardene MS, Islam SM, Murray K, Koong B. The validity of transverse intermaxillary analysis by traditional PA cephalometry compared with cone-beam computed tomography. Aust Orthod J. 2013;29:86–95.PubMedGoogle Scholar
  63. 63.
    Streit LM. CWRU’s transverse analysis developing norms orthodontics. Cleveland, OH: Case Western Reserve University; 2012.Google Scholar
  64. 64.
    Shewinvanakitkul W, Hans MG, Narendran S, Palomo JM. Measuring buccolingual inclination of mandibular canines and first molars using CBCT. Orthod Craniofac Res. 2011;14:168–74.CrossRefGoogle Scholar
  65. 65.
    Alkhatib R, Chung CH. Buccolingual inclination of first molars in untreated adults: a CBCT study. Angle Orthod. 2017;87:598–602.PubMedCrossRefGoogle Scholar
  66. 66.
    Evangelinakis N. Changes in buccolingual inclination of mandibular canines and first molars after orthodontic treatment using CBCT. Orthodontics. Cleveland, OH: Case Western Reserve University; 2010.Google Scholar
  67. 67.
    Karamitsou E. Pretreatment buccolingual inclination of maxillary canines and first molars. Orthodontics. Cleveland, OH: Case Western Reserve University; 2011.Google Scholar
  68. 68.
    Miyamoto MJ. Changes in buccolingual inclination of maxillary canines and first molars after orthodontic treatment using CBCT. Orthodontics. Cleveland, OH: Case Western Reserve University; 2011.Google Scholar
  69. 69.
    Yehya Mostafa R, Bous RM, Hans MG, Valiathan M, Copeland GE, Palomo JM. Effects of Case Western Reserve University’s transverse analysis on the quality of orthodontic treatment. Am J Orthod Dentofac Orthop. 2017;152:178–92.CrossRefGoogle Scholar
  70. 70.
    Vanarsdall RL Jr. Transverse dimension and long-term stability. Semin Orthod. 1999;5:171–80.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Holly Broadbent B. A new x-ray technique and its application to orthodontia. Angle Orthod. 1931:45–66.Google Scholar
  72. 72.
    Tweed CH. Evolutionary trends in orthodontics, past, present, and future. Am J Orthod Dentofacial Orthop. 1953;39:81–108.CrossRefGoogle Scholar
  73. 73.
    Steiner CC. Cephalometrics in orthodontics. Angle Orthod. 1959;29:8–29.Google Scholar
  74. 74.
    El H, Palomo JM. Measuring the airway in 3 dimensions: a reliability and accuracy study. Am J Orthod Dentofac Orthop. 2010;137:S50.e51–9.Google Scholar
  75. 75.
    Osorio F, Perilla M, Doyle DJ, Palomo JM. Cone beam computed tomography: an innovative tool for airway assessment. Anesth Analg. 2008;106:1803–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Palomo JM, Rao PS, Hans MG. Influence of CBCT exposure conditions on radiation dose. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:773–82.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    van Vlijmen OJ, Rangel FA, Berge SJ, Bronkhorst EM, Becking AG, Kuijpers-Jagtman AM. Measurements on 3D models of human skulls derived from two different cone beam CT scanners. Clin Oral Investig. 2011;15:721–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Grauer D, Cevidanes LS, Proffit WR. Working with DICOM craniofacial images. Am J Orthod Dentofac Orthop. 2009;136:460–70.CrossRefGoogle Scholar
  79. 79.
    Cevidanes LH, Bailey LJ, Tucker GR Jr, Styner MA, Mol A, Phillips CL, et al. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol. 2005;34:369–75.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofac Orthop. 2006;129:611–8.CrossRefGoogle Scholar
  81. 81.
    Cevidanes LH, Ruellas AC, Jomier J, Nguyen T, Pieper S, Budin F, et al. Incorporating 3-dimensional models in online articles. Am J Orthod Dentofac Orthop. 2015;147:S195–204.CrossRefGoogle Scholar
  82. 82.
    Cevidanes LH, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JF. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofac Orthop. 2009;136:94–9.CrossRefGoogle Scholar
  83. 83.
    Cevidanes LH, Bailey LJ, Tucker SF, Styner MA, Mol A, Phillips CL, et al. Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofac Orthop. 2007;131:44–50.CrossRefGoogle Scholar
  84. 84.
    Heymann GC, Cevidanes L, Cornelis M, De Clerck HJ, Tulloch JF. Three-dimensional analysis of maxillary protraction with intermaxillary elastics to miniplates. Am J Orthod Dentofac Orthop. 2010;137:274–84.CrossRefGoogle Scholar
  85. 85.
    Cevidanes LH, Hajati AK, Paniagua B, Lim PF, Walker DG, Palconet G, et al. Quantification of condylar resorption in temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:110–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bazina M, Cevidanes L, Ruellas A, Valiathan M, Quereshy F, Syed A, Wu R, Palomo JM. Precision and reliability of Dolphin 3-dimensional voxel-based superimposition. Am J Orthod Dentofac Orthop. 2018 Apr;153(4):599–606.CrossRefGoogle Scholar
  87. 87.
    BenNasir E, Bazina M, Cevidanes L, Amberman BD, Palomo JM. Accuracy and Reliability of Dolphin 3D voxel based superimposition in growing patients. Cleveland, OH: Case Western Reserve University; 2017.Google Scholar
  88. 88.
    Weissheimer A, Menezes LM, Koerich L, Pham J, Cevidanes LH. Fast three-dimensional superimposition of cone beam computed tomography for orthopaedics and orthognathic surgery evaluation. Int J Oral Maxillofac Surg. 2015;44:1188–96.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Elshebiny T, Bennasir E, Palomo JM. Comparison of two fast three dimensional voxel based superimposition software programs. Cleveland, OH: Case Western Reserve University; 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan Martin Palomo
    • 1
    Email author
  • Hakan El
    • 2
  • Neda Stefanovic
    • 3
  • Rany Bous
    • 4
  • Tarek Elshebiny
    • 4
  1. 1.Department of Orthodontics, Craniofacial Imaging Center, School of Dental MedicineCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Orthodontics, School of Dental MedicineHacettepe UniversityAnkaraTurkey
  3. 3.Department of Orthodontics, Faculty of Dental MedicineUniversity of BelgradeBelgradeSerbia
  4. 4.Department of Orthodontics, School of Dental MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations