Diagnostic Value of 3D Imaging in Clinical Orthodontics

  • Juan Martin PalomoEmail author
  • Hakan El
  • Neda Stefanovic
  • Mohamed Bazina


The digital volumetric tomography era has begun, and we now have access to significant additional diagnostic information. When moving from 2D to 3D, distances and angles turn into areas and volumes, and more information may take orthodontics to the next level, increasing the scope of what can be done clinically. This chapter shows some simple ways of incorporating 3D analysis into a busy orthodontic office, without the need for special software.


Cone Beam Computed Tomography CBCT Transverse Resorption Bone Orientation 


  1. 1.
    Palomo JM, Hunt DW Jr, Hans MG, Broadbent BH Jr. A longitudinal 3-dimensional size and shape comparison of untreated class I and class II subjects. Am J Orthod Dentofac Orthop. 2005;127:584–91.CrossRefGoogle Scholar
  2. 2.
    Vig PS, Hall DJ. The inadequacy of cephalometric radiographs for airway assessment. Am J Orthod. 1980;77:230–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod. 2008;78:387–95.PubMedCrossRefGoogle Scholar
  4. 4.
    van Vlijmen OJ, Berge SJ, Bronkhorst EM, Swennen GR, Katsaros C, Kuijpers-Jagtman AM. A comparison of frontal radiographs obtained from cone beam CT scans and conventional frontal radiographs of human skulls. Int J Oral Maxillofac Surg. 2009;38:773–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Lundstrom A, Lundstrom F, Lebret LM, Moorrees CF. Natural head position and natural head orientation: basic considerations in cephalometric analysis and research. Eur J Orthod. 1995;17:111–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Shokri A, Miresmaeili A, Farhadian N, Falah-Kooshki S, Amini P, Mollaie N. Effect of changing the head position on accuracy of transverse measurements of the maxillofacial region made on cone beam computed tomography and conventional posterior-anterior cephalograms. Dentomaxillofac Radiol. 2017;46:20160180.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cevidanes L, Oliveira AE, Motta A, Phillips C, Burke B, Tyndall D. Head orientation in CBCT-generated cephalograms. Angle Orthod. 2009;79:971–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cassi D, De Biase C, Tonni I, Gandolfini M, Di Blasio A, Piancino MG. Natural position of the head: review of two-dimensional and three-dimensional methods of recording. Br J Oral Maxillofac Surg. 2016;54:233–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrario VF, Sforza C, Germano D, Dalloca LL, Miani A Jr. Head posture and cephalometric analyses: an integrated photographic/radiographic technique. Am J Orthod Dentofac Orthop. 1994;106:257–64.CrossRefGoogle Scholar
  10. 10.
    Lundstrom F, Lundstrom A. Natural head position as a basis for cephalometric analysis. Am J Orthod Dentofac Orthop. 1992;101:244–7.CrossRefGoogle Scholar
  11. 11.
    Dvortsin DP, Ye Q, Pruim GJ, Dijkstra PU, Ren Y. Reliability of the integrated radiograph-photograph method to obtain natural head position in cephalometric diagnosis. Angle Orthod. 2011;81:889–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Usumez S, Orhan M. Inclinometer method for recording and transferring natural head position in cephalometrics. Am J Orthod Dentofac Orthop. 2001;120:664–70.CrossRefGoogle Scholar
  13. 13.
    Damstra J, Fourie Z, Ren Y. Simple technique to achieve a natural position of the head for cone beam computed tomography. Br J Oral Maxillofac Surg. 2010;48:236–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Xia JJ, McGrory JK, Gateno J, Teichgraeber JF, Dawson BC, Kennedy KA, et al. A new method to orient 3-dimensional computed tomography models to the natural head position: a clinical feasibility study. J Oral Maxillofac Surg. 2011;69:584–91.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    de Paula LK, Ackerman JL, Carvalho Fde A, Eidson L, Cevidanes LH. Digital live-tracking 3-dimensional minisensors for recording head orientation during image acquisition. Am J Orthod Dentofac Orthop. 2012;141:116–23.CrossRefGoogle Scholar
  16. 16.
    Weber DW, Fallis DW, Packer MD. Three-dimensional reproducibility of natural head position. Am J Orthod Dentofac Orthop. 2013;143:738–44.CrossRefGoogle Scholar
  17. 17.
    Kim DS, Yang HJ, Huh KH, Lee SS, Heo MS, Choi SC, et al. Three-dimensional natural head position reproduction using a single facial photograph based on the POSIT method. J Craniomaxillofac Surg. 2014;42:1315–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Hsung TC, Lo J, Li TS, Cheung LK. Recording of natural head position using stereophotogrammetry: a new technique and reliability study. J Oral Maxillofac Surg. 2014;72:2256–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Ackerman JL, Proffit WR, Sarver DM, Ackerman MB, Kean MR. Pitch, roll, and yaw: describing the spatial orientation of dentofacial traits. Am J Orthod Dentofac Orthop. 2007;131:305–10.CrossRefGoogle Scholar
  20. 20.
    Solow B, Sonnesen L. Head posture and malocclusions. Eur J Orthod. 1998;20:685–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Sonnesen L, Bakke M, Solow B. Temporomandibular disorders in relation to craniofacial dimensions, head posture and bite force in children selected for orthodontic treatment. Eur J Orthod. 2001;23:179–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Solow B, Siersbaek-Nielsen S. Cervical and craniocervical posture as predictors of craniofacial growth. Am J Orthod Dentofac Orthop. 1992;101:449–58.CrossRefGoogle Scholar
  23. 23.
    El-Beialy AR, Fayed MS, El-Bialy AM, Mostafa YA. Accuracy and reliability of cone-beam computed tomography measurements: influence of head orientation. Am J Orthod Dentofac Orthop. 2011;140:157–65.CrossRefGoogle Scholar
  24. 24.
    Lenza MG, Lenza MM, Dalstra M, Melsen B, Cattaneo PM. An analysis of different approaches to the assessment of upper airway morphology: a CBCT study. Orthod Craniofac Res. 2010;13:96–105.PubMedCrossRefGoogle Scholar
  25. 25.
    Kawakami M, Yamamoto K, Fujimoto M, Ohgi K, Inoue M, Kirita T. Changes in tongue and hyoid positions, and posterior airway space following mandibular setback surgery. J Craniomaxillofac Surg. 2005;33:107–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang C, Yi Y, Jiang C, Fang S, Wang J. Pharyngeal airway space and hyoid bone positioning after different orthognathic surgeries in skeletal class II patients. J Oral Maxillofac Surg. 2017;75:1482–90.PubMedCrossRefGoogle Scholar
  27. 27.
    van Vlijmen OJ, Berge SJ, Swennen GR, Bronkhorst EM, Katsaros C, Kuijpers-Jagtman AM. Comparison of cephalometric radiographs obtained from cone-beam computed tomography scans and conventional radiographs. J Oral Maxillofac Surg. 2009;67:92–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Hassan B, van der Stelt P, Sanderink G. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod. 2009;31:129–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Moorrees CAA, Kean MR. Natural head position, a basic consideration in the interpretation of cephalometric radiographs. Am J Orthod. 1958;45:785–91.Google Scholar
  30. 30.
    Foster TD, Howat AP, Naish PJ. Variation in cephalometric reference lines. Br J Orthod. 1981;8:183–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Moyers RE, Bookstein FL. The inappropriateness of conventional cephalometrics. Am J Orthod. 1979;75:599–617.PubMedCrossRefGoogle Scholar
  32. 32.
    Solow B, Tallgren A. Natural head position in standing subjects. Acta Odontol Scand. 1971;29:591–607.PubMedCrossRefGoogle Scholar
  33. 33.
    Kumar VLJ. Effect of cone beam CT study orientation on synthesized 2D radiographs from Dolphin 3D software. Kansas City, MO: American Association of Oral and Maxillofacial Radiology; 2006.Google Scholar
  34. 34.
    Wu RPJ, Landers M, et al. Anatomically based cranial landmarks for three-dimensional superimposition. Orthodontics. Cleveland, OH: Case Western Reserve University; 2012.Google Scholar
  35. 35.
    Ruellas AC, Tonello C, Gomes LR, Yatabe MS, Macron L, Lopinto J, et al. Common 3-dimensional coordinate system for assessment of directional changes. Am J Orthod Dentofac Orthop. 2016;149:645–56.CrossRefGoogle Scholar
  36. 36.
    Hans MG, Palomo JM, Valiathan M. History of imaging in orthodontics from broadbent to cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2015;148:914–21.CrossRefGoogle Scholar
  37. 37.
    Kumar V, Ludlow J, Soares Cevidanes LH, Mol A. In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod. 2008;78:873–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Li N, Hu B, Mi F, Song J. Preliminary evaluation of cone beam computed tomography in three-dimensional cephalometry for clinical application. Exp Ther Med. 2017;13:2451–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofac Orthop. 2009;136:19–25. discussion 25-18CrossRefGoogle Scholar
  40. 40.
    Ludlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009;136:312.e311. 310; discussion 312–13Google Scholar
  41. 41.
    Kumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac Radiol. 2007;36:263–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Spolyar JL. Head positioning error in cephalometric radiography—an implant study. Angle Orthod. 1987;57:77–88.PubMedGoogle Scholar
  43. 43.
    Rino Neto J, de Paiva JB, Queiroz GV, Attizzani MF, Miasiro JH. Evaluation of radiographic magnification in lateral cephalograms obtained with different X-ray devices: experimental study in human dry skull. Dental Press J Orthod. 2013;18:17.e11-17.CrossRefGoogle Scholar
  44. 44.
    Jacobson A, Caufield PW. Introduction to radiographic cephalometry. Philadelphia, PA: Lea & Febiger; 1985.Google Scholar
  45. 45.
    Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN. Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. Radiographics. 2005;25:1409–28.PubMedCrossRefGoogle Scholar
  46. 46.
    Palomo JM, Valiathan M, Hans MG. 3D orthodontic diagnosis and treatment planning. In: Kapila S, editor. Cone beam computed tomography in orthodontics: indications, insights, and innovations. Ames, IA: John Wiley & Sons Inc.; 2014. p. 221–46.Google Scholar
  47. 47.
    Valai-Kasim SA, Krishnaswamy NR, Tom B, Thavarajah R. Rotational panoramic radiographs-unusual triple images. J Clin Exp Dent. 2015;7:e183–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Okeson JP. Management of temporomandibular disorders and occlusion. Elsevier Mosby: St. Louis, MO; 2013.Google Scholar
  49. 49.
    Okeson JP. Functional anatomy and biomechanics of the masticatory system. In: Okeson JP, editor. Management of temporomandibular disorders and occlusion. St. Louis, MO: Elsevier Mosby; 2013. p. 2–20.Google Scholar
  50. 50.
    Comission E. Cone beam CT for dental and maxillofacial radiology: evidence-based guidelines. Luxembourg: SEDENTEXCT; 2012. p. 172.Google Scholar
  51. 51.
    Kau CH, Richmond S, Palomo JM, Hans MG. Three-dimensional cone beam computerized tomography in orthodontics. J Orthod. 2005;32:282–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Smith BR, Park JH, Cederberg RA. An evaluation of cone-beam computed tomography use in postgraduate orthodontic programs in the United States and Canada. J Dent Educ. 2011;75:98–106.PubMedGoogle Scholar
  53. 53.
    Alqerban A, Jacobs R, van Keirsbilck PJ, Aly M, Swinnen S, Fieuws S, et al. The effect of using CBCT in the diagnosis of canine impaction and its impact on the orthodontic treatment outcome. J Orthod Sci. 2014;3:34–40.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2005;128:418–23.CrossRefGoogle Scholar
  55. 55.
    Garib DG, Calil LR, Leal CR, Janson G. Is there a consensus for CBCT use in orthodontics? Dental Press J Orthod. 2014;19:136–49.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Proffit WR, Sarver DM, Ackerman JL. Orthodontics diagnosis: the problem-oriented approach. In: Proffit WR, Fields HW, Sarver DM, editors. Contemporary orthodontics. St. Louis, MO: Mosby Elsevier; 2013. p. xii, 754.Google Scholar
  57. 57.
    Radiology AAoOaM. Clinical recommendations regarding use of cone beam computed tomography in Orthodontics. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:238–57.CrossRefGoogle Scholar
  58. 58.
    Farman AG. Image gently: enhancing radiation protection during pediatric imaging. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:657–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:20140224.PubMedCrossRefGoogle Scholar
  60. 60.
    Machado GL. CBCT imaging – a boon to orthodontics. Saudi Dent J. 2015;27:12–21.PubMedCrossRefGoogle Scholar
  61. 61.
    Ericson S, Kurol PJ. Resorption of incisors after ectopic eruption of maxillary canines: a CT study. Angle Orthod. 2000;70:415–23.PubMedGoogle Scholar
  62. 62.
    Ericson S, Kurol J. Incisor root resorptions due to ectopic maxillary canines imaged by computerized tomography: a comparative study in extracted teeth. Angle Orthod. 2000;70:276–83.PubMedGoogle Scholar
  63. 63.
    Oz AZ, Oz AA, El H, Palomo JM. Maxillary sinus volume in patients with impacted canines. Angle Orthod. 2017;87:25–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Power SM, Short MB. An investigation into the response of palatally displaced canines to the removal of deciduous canines and an assessment of factors contributing to favourable eruption. Br J Orthod. 1993;20:215–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Cernochova P, Krupa P, Izakovicova-Holla L. Root resorption associated with ectopically erupting maxillary permanent canines: a computed tomography study. Eur J Orthod. 2011;33:483–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Ericson S, Kurol J. Early treatment of palatally erupting maxillary canines by extraction of the primary canines. Eur J Orthod. 1988;10:283–95.PubMedCrossRefGoogle Scholar
  67. 67.
    Kau CH, Pan P, Gallerano RL, English JD. A novel 3D classification system for canine impactions—the KPG index. Int J Med Robot. 2009;5:291–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Brezniak N, Wasserstein A. Root resorption after orthodontic treatment: part 1. Literature review. Am J Orthod Dentofac Orthop. 1993;103:62–6.CrossRefGoogle Scholar
  69. 69.
    Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. Eur J Orthod. 1988;10:30–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Chan EK, Darendeliler MA. Exploring the third dimension in root resorption. Orthod Craniofac Res. 2004;7:64–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Brezniak N, Goren S, Zoizner R, Dinbar A, Arad A, Wasserstein A, et al. A comparison of three methods to accurately measure root length. Angle Orthod. 2004;74:786–91.PubMedGoogle Scholar
  72. 72.
    Cohenca N, Simon JH, Mathur A, Malfaz JM. Clinical indications for digital imaging in dento-alveolar trauma. Part 2: root resorption. Dent Traumatol. 2007;23:105–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Creanga AG, Geha H, Sankar V, Teixeira FB, McMahan CA, Noujeim M. Accuracy of digital periapical radiography and cone-beam computed tomography in detecting external root resorption. Imaging Sci Dent. 2015;45:153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Katona TR. Flaws in root resorption assessment algorithms: role of tooth shape. Am J Orthod Dentofacial Orthop. 2006;130:698.e619–27.CrossRefGoogle Scholar
  75. 75.
    Leach HA, Ireland AJ, Whaites EJ. Radiographic diagnosis of root resorption in relation to orthodontics. Br Dent J. 2001;190:16–22.PubMedGoogle Scholar
  76. 76.
    Patel S, Dawood A, Mannocci F, Wilson R, Pitt FT. Detection of periapical bone defects in human jaws using cone beam computed tomography and intraoral radiography. Int Endod J. 2009;42:507–15.PubMedCrossRefGoogle Scholar
  77. 77.
    Sameshima GT, Asgarifar KO. Assessment of root resorption and root shape: periapical vs panoramic films. Angle Orthod. 2001;71:185–9.PubMedGoogle Scholar
  78. 78.
    Webber RL, Messura JK. An in vivo comparison of diagnostic information obtained from tuned-aperture computed tomography and conventional dental radiographic imaging modalities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:239–47.PubMedCrossRefGoogle Scholar
  79. 79.
    Apajalahti S, Peltola JS. Apical root resorption after orthodontic treatment – a retrospective study. Eur J Orthod. 2007;29:408–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Dudic A, Giannopoulou C, Leuzinger M, Kiliaridis S. Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomography of super-high resolution. Am J Orthod Dentofac Orthop. 2009;135:434–7.CrossRefGoogle Scholar
  81. 81.
    Durack C, Patel S, Davies J, Wilson R, Mannocci F. Diagnostic accuracy of small volume cone beam computed tomography and intraoral periapical radiography for the detection of simulated external inflammatory root resorption. Int Endod J. 2011;44:136–47.PubMedCrossRefGoogle Scholar
  82. 82.
    Janson GR, De Luca Canto G, Martins DR, Henriques JF, De Freitas MR. A radiographic comparison of apical root resorption after orthodontic treatment with 3 different fixed appliance techniques. Am J Orthod Dentofac Orthop. 2000;118:262–73.CrossRefGoogle Scholar
  83. 83.
    Patel S, Dawood A, Wilson R, Horner K, Mannocci F. The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography – an in vivo investigation. Int Endod J. 2009;42:831–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Andreasen FM, Sewerin I, Mandel U, Andreasen JO. Radiographic assessment of simulated root resorption cavities. Endod Dent Traumatol. 1987;3:21–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Chapnick L. External root resorption: an experimental radiographic evaluation. Oral Surg Oral Med Oral Pathol. 1989;67:578–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Goldberg F, De Silvio A, Dreyer C. Radiographic assessment of simulated external root resorption cavities in maxillary incisors. Endod Dent Traumatol. 1998;14:133–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Mah J, Hatcher D. Three-dimensional craniofacial imaging. Am J Orthod Dentofac Orthop. 2004;126:308–9.CrossRefGoogle Scholar
  88. 88.
    Noujeim M, Prihoda T, Langlais R, Nummikoski P. Evaluation of high-resolution cone beam computed tomography in the detection of simulated interradicular bone lesions. Dentomaxillofac Radiol. 2009;38:156–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Sherrard JF, Rossouw PE, Benson BW, Carrillo R, Buschang PH. Accuracy and reliability of tooth and root lengths measured on cone-beam computed tomographs. Am J Orthod Dentofac Orthop. 2010;137:S100–8.CrossRefGoogle Scholar
  90. 90.
    Castro IO, Alencar AH, Valladares-Neto J, Estrela C. Apical root resorption due to orthodontic treatment detected by cone beam computed tomography. Angle Orthod. 2013;83:196–203.PubMedCrossRefGoogle Scholar
  91. 91.
    Lund H, Grondahl K, Grondahl HG. Cone beam computed tomography for assessment of root length and marginal bone level during orthodontic treatment. Angle Orthod. 2010;80:466–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Ren H, Chen J, Deng F, Zheng L, Liu X, Dong Y. Comparison of cone-beam computed tomography and periapical radiography for detecting simulated apical root resorption. Angle Orthod. 2013;83:189–95.PubMedCrossRefGoogle Scholar
  93. 93.
    Dalmau E, Zamora N, Tarazona B, Gandia JL, Paredes V. A comparative study of the pharyngeal airway space, measured with cone beam computed tomography, between patients with different craniofacial morphologies. J Craniomaxillofac Surg. 2015;43:1438–46.PubMedCrossRefGoogle Scholar
  94. 94.
    Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG. Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofac Orthop. 2008;134:573–82.CrossRefGoogle Scholar
  95. 95.
    Kamburoglu K, Murat S, Kolsuz E, Kurt H, Yuksel S, Paksoy C. Comparative assessment of subjective image quality of cross-sectional cone-beam computed tomography scans. J Oral Sci. 2011;53:501–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Lennon S, Patel S, Foschi F, Wilson R, Davies J, Mannocci F. Diagnostic accuracy of limited-volume cone-beam computed tomography in the detection of periapical bone loss: 360 degrees scans versus 180 degrees scans. Int Endod J. 2011;44:1118–27.PubMedCrossRefGoogle Scholar
  97. 97.
    Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farman AG. Linear accuracy of cone beam CT derived 3D images. Angle Orthod. 2009;79:150–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Alqerban A, Jacobs R, Souza PC, Willems G. In-vitro comparison of 2 cone-beam computed tomography systems and panoramic imaging for detecting simulated canine impaction-induced external root resorption in maxillary lateral incisors. Am J Orthod Dentofac Orthop. 2009;136:764.e761–11. discussion 764–5Google Scholar
  99. 99.
    Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33:291–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Marmulla R, Wortche R, Muhling J, Hassfeld S. Geometric accuracy of the NewTom 9000 Cone Beam CT. Dentomaxillofac Radiol. 2005;34:28–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Misch KA, Yi ES, Sarment DP. Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol. 2006;77:1261–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Mischkowski RA, Pulsfort R, Ritter L, Neugebauer J, Brochhagen HG, Keeve E, et al. Geometric accuracy of a newly developed cone-beam device for maxillofacial imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:551–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Alqerban A, Jacobs R, Fieuws S, Nackaerts O, Willems G. Comparison of 6 cone-beam computed tomography systems for image quality and detection of simulated canine impaction-induced external root resorption in maxillary lateral incisors. Am J Orthod Dentofac Orthop. 2011;140:e129–39.CrossRefGoogle Scholar
  104. 104.
    Alqerban A, Jacobs R, Fieuws S, Willems G. Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption. Eur J Orthod. 2011;33:93–102.PubMedCrossRefGoogle Scholar
  105. 105.
    Bernardes RA, de Paulo RS, Pereira LO, Duarte MA, Ordinola-Zapata R, de Azevedo JR. Comparative study of cone beam computed tomography and intraoral periapical radiographs in diagnosis of lingual-simulated external root resorptions. Dent Traumatol. 2012;28:268–72.PubMedCrossRefGoogle Scholar
  106. 106.
    D'Addazio PS, Campos CN, Ozcan M, Teixeira HG, Passoni RM, Carvalho AC. A comparative study between cone-beam computed tomography and periapical radiographs in the diagnosis of simulated endodontic complications. Int Endod J. 2011;44:218–24.PubMedCrossRefGoogle Scholar
  107. 107.
    Kamburoglu K, Kursun S, Yuksel S, Oztas B. Observer ability to detect ex vivo simulated internal or external cervical root resorption. J Endod. 2011;37:168–75.PubMedCrossRefGoogle Scholar
  108. 108.
    Yi J, Sun Y, Li Y, Li C, Li X, Zhao Z. Cone-beam computed tomography versus periapical radiograph for diagnosing external root resorption: a systematic review and meta-analysis. Angle Orthod. 2017;87:328–37.PubMedCrossRefGoogle Scholar
  109. 109.
    Kapila SD, Nervina JM. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol. 2015;44:20140282.PubMedCrossRefGoogle Scholar
  110. 110.
    Andrews LF. The six keys to normal occlusion. Am J Orthod. 1972;62:296–309.PubMedCrossRefGoogle Scholar
  111. 111.
    Edwards JG. The prevention of relapse in extraction cases. Am J Orthod. 1971;60:128–44.PubMedCrossRefGoogle Scholar
  112. 112.
    Graber TM. Postmortems in posttreatment adjustment. Am J Orthod. 1966;52:331–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Hatasaka HH. A radiographic study of roots in extraction sites. Angle Orthod. 1976;46:64–8.PubMedGoogle Scholar
  114. 114.
    Holdaway RA. Bracket angulation as applied to the edgewise appliance. Angle Orthod. 1952;22:227–36.Google Scholar
  115. 115.
    Mayoral G. Treatment results with light wires studied by panoramic radiography. Am J Orthod. 1982;81:489–97.PubMedCrossRefGoogle Scholar
  116. 116.
    Cattaneo PM, Salih RA, Melsen B. Labio-lingual root control of lower anterior teeth and canines obtained by active and passive self-ligating brackets. Angle Orthod. 2013;83:691–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Gracco A, Luca L, Bongiorno MC, Siciliani G. Computed tomography evaluation of mandibular incisor bony support in untreated patients. Am J Orthod Dentofac Orthop. 2010;138:179–87.CrossRefGoogle Scholar
  118. 118.
    Hasund A, Ulstein G. The position of the incisors in relation to the lines NA and NB in different facial types. Am J Orthod. 1970;57:1–14.PubMedCrossRefGoogle Scholar
  119. 119.
    Lucchesi MV, Wood RE, Nortje CJ. Suitability of the panoramic radiograph for assessment of mesiodistal angulation of teeth in the buccal segments of the mandible. Am J Orthod Dentofac Orthop. 1988;94:303–10.CrossRefGoogle Scholar
  120. 120.
    Peck JL, Sameshima GT, Miller A, Worth P, Hatcher DC. Mesiodistal root angulation using panoramic and cone beam CT. Angle Orthod. 2007;77:206–13.PubMedCrossRefGoogle Scholar
  121. 121.
    Ursi WJ, Almeida RR, Tavano O, Henriques JF. Assessment of mesiodistal axial inclination through panoramic radiography. J Clin Orthod. 1990;24:166–73.PubMedGoogle Scholar
  122. 122.
    Baumrind S, Frantz RC. The reliability of head film measurements. 2. Conventional angular and linear measures. Am J Orthod. 1971;60:505–17.PubMedCrossRefGoogle Scholar
  123. 123.
    McKee IW, Glover KE, Williamson PC, Lam EW, Heo G, Major PW. The effect of vertical and horizontal head positioning in panoramic radiography on mesiodistal tooth angulations. Angle Orthod. 2001;71:442–51.PubMedGoogle Scholar
  124. 124.
    Xie Q, Soikkonen K, Wolf J, Mattila K, Gong M, Ainamo A. Effect of head positioning in panoramic radiography on vertical measurements: an in vitro study. Dentomaxillofac Radiol. 1996;25:61–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Schiff T, D'Ambrosio J, Glass BJ, Langlais RP, McDavid WD. Common positioning and technical errors in panoramic radiography. J Am Dent Assoc. 1986;113:422–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Scarfe WC, Nummikoski P, McDavid WD, Welander U, Tronje G. Radiographic interproximal angulations: implications for rotational panoramic radiography. Oral Surg Oral Med Oral Pathol. 1993;76:664–72.PubMedCrossRefGoogle Scholar
  127. 127.
    Samawi SS, Burke PH. Angular distortion in the orthopantomogram. Br J Orthod. 1984;11:100–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Cattaneo PM, Treccani M, Carlsson K, Thorgeirsson T, Myrda A, Cevidanes LH, et al. Transversal maxillary dento-alveolar changes in patients treated with active and passive self-ligating brackets: a randomized clinical trial using CBCT-scans and digital models. Orthod Craniofac Res. 2011;14:222–33.PubMedCrossRefGoogle Scholar
  129. 129.
    Bouwens DG, Cevidanes L, Ludlow JB, Phillips C. Comparison of mesiodistal root angulation with posttreatment panoramic radiographs and cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2011;139:126–32.CrossRefGoogle Scholar
  130. 130.
    Pontes LF, Cecim RL, Machado SM, Normando D. Tooth angulation and dental arch perimeter-the effect of orthodontic bracket prescription. Eur J Orthod. 2015;37:435–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Rhoden FK, Maltagliati LA, de Castro Ferreira Conti AC, Almeida-Pedrin RR, Filho LC, de Almeida Cardoso M. Cone beam computed tomography-based evaluation of the anterior teeth position changes obtained by passive self-ligating brackets. J Contemp Dent Pract. 2016;17:623–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Henneman S, Von den Hoff JW, Maltha JC. Mechanobiology of tooth movement. Eur J Orthod. 2008;30:299–306.PubMedCrossRefGoogle Scholar
  133. 133.
    Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008;87:414–34.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sarikaya S, Haydar B, Ciger S, Ariyurek M. Changes in alveolar bone thickness due to retraction of anterior teeth. Am J Orthod Dentofac Orthop. 2002;122:15–26.CrossRefGoogle Scholar
  135. 135.
    Wainwright WM. Faciolingual tooth movement: its influence on the root and cortical plate. Am J Orthod. 1973;64:278–302.PubMedCrossRefGoogle Scholar
  136. 136.
    Wehrbein H, Bauer W, Diedrich P. Mandibular incisors, alveolar bone, and symphysis after orthodontic treatment. A retrospective study. Am J Orthod Dentofac Orthop. 1996;110:239–46.CrossRefGoogle Scholar
  137. 137.
    Zachrisson BU, Alnaes L. Periodontal condition in orthodontically treated and untreated individuals. I. Loss of attachment, gingival pocket depth and clinical crown height. Angle Orthod. 1973;43:402–11.PubMedGoogle Scholar
  138. 138.
    Zachrisson BU, Alnaes L. Periodontal condition in orthodontically treated and untreated individuals. II Alveolar bone loss: radiographic findings. Angle Orthod. 1974;44:48–55.PubMedGoogle Scholar
  139. 139.
    Newman MG, Takei HH, Carranza FA. Carranza’s clinical periodontology. Philadelphia, PA: W.B. Saunders Company; 2002.Google Scholar
  140. 140.
    Handelman CS. The anterior alveolus: its importance in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae. Angle Orthod. 1996;66:95–109. discussion 109–110PubMedGoogle Scholar
  141. 141.
    Wehrbein H, Fuhrmann RA, Diedrich PR. Periodontal conditions after facial root tipping and palatal root torque of incisors. Am J Orthod Dentofac Orthop. 1994;106:455–62.CrossRefGoogle Scholar
  142. 142.
    Wehrbein H, Fuhrmann RA, Diedrich PR. Human histologic tissue response after long-term orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1995;107:360–71.CrossRefGoogle Scholar
  143. 143.
    Fuhrmann R. Three-dimensional interpretation of periodontal lesions and remodeling during orthodontic treatment. Part III. J Orofac Orthop. 1996;57:224–37.PubMedCrossRefGoogle Scholar
  144. 144.
    DeAngelis V. Observations on the response of alveolar bone to orthodontic force. Am J Orthod. 1970;58:284–94.PubMedCrossRefGoogle Scholar
  145. 145.
    Ericsson I, Thilander B, Lindhe J, Okamoto H. The effect of orthodontic tilting movements on the periodontal tissues of infected and non-infected dentitions in dogs. J Clin Periodontol. 1977;4:278–93.PubMedCrossRefGoogle Scholar
  146. 146.
    Meikle MC. The dentomaxillary complex and overjet correction in class II, division 1 malocclusion: objectives of skeletal and alveolar remodeling. Am J Orthod. 1980;77:184–97.PubMedCrossRefGoogle Scholar
  147. 147.
    Allais D, Melsen B. Does labial movement of lower incisors influence the level of the gingival margin? A case-control study of adult orthodontic patients. Eur J Orthod. 2003;25:343–52.PubMedCrossRefGoogle Scholar
  148. 148.
    Artun J, Grobety D. Periodontal status of mandibular incisors after pronounced orthodontic advancement during adolescence: a follow-up evaluation. Am J Orthod Dentofac Orthop. 2001;119:2–10.CrossRefGoogle Scholar
  149. 149.
    Artun J, Urbye KS. The effect of orthodontic treatment on periodontal bone support in patients with advanced loss of marginal periodontium. Am J Orthod Dentofac Orthop. 1988;93:143–8.CrossRefGoogle Scholar
  150. 150.
    Djeu G, Hayes C, Zawaideh S. Correlation between mandibular central incisor proclination and gingival recession during fixed appliance therapy. Angle Orthod. 2002;72:238–45.PubMedGoogle Scholar
  151. 151.
    Dorfman HS. Mucogingival changes resulting from mandibular incisor tooth movement. Am J Orthod. 1978;74:286–97.PubMedCrossRefGoogle Scholar
  152. 152.
    Pearson LE. Gingival height of lower central incisors, orthodontically treated and untreated. Angle Orthod. 1968;38:337–9.PubMedGoogle Scholar
  153. 153.
    Ruf S, Hansen K, Pancherz H. Does orthodontic proclination of lower incisors in children and adolescents cause gingival recession? Am J Orthod Dentofac Orthop. 1998;114:100–6.CrossRefGoogle Scholar
  154. 154.
    Wingard CE, Bowers GM. The effects of facial bone from facial tipping of incisors in monkeys. J Periodontol. 1976;47:450–4.PubMedCrossRefGoogle Scholar
  155. 155.
    Grant DA, Stern IB, Listgarten MA, Orban BJ, Gottlieb B. Periodontics in the tradition of Gottlieb and Orban. St. Louis, MO: Elsevier Mosby; 1988.Google Scholar
  156. 156.
    Melsen B, Allais D. Factors of importance for the development of dehiscences during labial movement of mandibular incisors: a retrospective study of adult orthodontic patients. Am J Orthod Dentofac Orthop. 2005;127:552–61. quiz 625CrossRefGoogle Scholar
  157. 157.
    Wennstrom JL. Mucogingival considerations in orthodontic treatment. Semin Orthod. 1996;2:46–54.PubMedCrossRefGoogle Scholar
  158. 158.
    Wennstrom JL, Lindhe J, Sinclair F, Thilander B. Some periodontal tissue reactions to orthodontic tooth movement in monkeys. J Clin Periodontol. 1987;14:121–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Wennstrom JL, Stokland BL, Nyman S, Thilander B. Periodontal tissue response to orthodontic movement of teeth with infrabony pockets. Am J Orthod Dentofac Orthop. 1993;103:313–9.CrossRefGoogle Scholar
  160. 160.
    Yared KF, Zenobio EG, Pacheco W. Periodontal status of mandibular central incisors after orthodontic proclination in adults. Am J Orthod Dentofac Orthop. 2006;130:6.e1–8.CrossRefGoogle Scholar
  161. 161.
    Baysal A, Ucar FI, Buyuk SK, Ozer T, Uysal T. Alveolar bone thickness and lower incisor position in skeletal class I and class II malocclusions assessed with cone-beam computed tomography. Korean J Orthod. 2013;43:134–40.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Ericsson I, Thilander B. Orthodontic relapse in dentitions with reduced periodontal support: an experimental study in dogs. Eur J Orthod. 1980;2:51–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Rothe LE, Bollen AM, Little RM, Herring SW, Chaison JB, Chen CS, et al. Trabecular and cortical bone as risk factors for orthodontic relapse. Am J Orthod Dentofac Orthop. 2006;130:476–84.CrossRefGoogle Scholar
  164. 164.
    Lang NP, Hill RW. Radiographs in periodonties. J Clin Periodontol. 1977;4:16–28.PubMedCrossRefGoogle Scholar
  165. 165.
    Leung CC, Palomo L, Griffith R, Hans MG. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofac Orthop. 2010;137:S109–19.CrossRefGoogle Scholar
  166. 166.
    Fu JH, Yeh CY, Chan HL, Tatarakis N, Leong DJ, Wang HL. Tissue biotype and its relation to the underlying bone morphology. J Periodontol. 2010;81:569–74.PubMedCrossRefGoogle Scholar
  167. 167.
    Ganguly R, Ruprecht A, Vincent S, Hellstein J, Timmons S, Qian F. Accuracy of linear measurement in the Galileos cone beam computed tomography under simulated clinical conditions. Dentomaxillofac Radiol. 2011;40:299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:534–42.PubMedCrossRefGoogle Scholar
  169. 169.
    Patcas R, Müller L, Ullrich O, Peltomäki T. Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofac Orthop. 2012;141:41–50.CrossRefGoogle Scholar
  170. 170.
    Shiratori LN, Marotti J, Yamanouchi J, Chilvarquer I, Contin I, Tortamano-Neto P. Measurement of buccal bone volume of dental implants by means of cone-beam computed tomography. Clin Oral Implants Res. 2012;23:797–804.PubMedCrossRefGoogle Scholar
  171. 171.
    Sun Z, Smith T, Kortam S, Kim DG, Tee BC, Fields H. Effect of bone thickness on alveolar bone-height measurements from cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2011;139:e117–27.CrossRefGoogle Scholar
  172. 172.
    Timock AM, Cook V, McDonald T, Leo MC, Crowe J, Benninger BL, et al. Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am J Orthod Dentofac Orthop. 2011;140:734–44.CrossRefGoogle Scholar
  173. 173.
    Tomasi C, Bressan E, Corazza B, Mazzoleni S, Stellini E, Lith A. Reliability and reproducibility of linear mandible measurements with the use of a cone-beam computed tomography and two object inclinations. Dentomaxillofac Radiol. 2011;40:244–50.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Wood R, Sun Z, Chaudhry J, Tee BC, Kim DG, Leblebicioglu B, et al. Factors affecting the accuracy of buccal alveolar bone height measurements from cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2013;143:353–63.CrossRefGoogle Scholar
  175. 175.
    Cook VC, Timock AM, Crowe JJ, Wang M, Covell DA Jr. Accuracy of alveolar bone measurements from cone beam computed tomography acquired using varying settings. Orthod Craniofac Res. 2015;18(Suppl 1):127–36.PubMedCrossRefGoogle Scholar
  176. 176.
    Kamburoglu K, Kolsuz E, Kurt H, Kilic C, Ozen T, Paksoy CS. Accuracy of CBCT measurements of a human skull. J Digit Imaging. 2011;24:787–93.PubMedCrossRefGoogle Scholar
  177. 177.
    Medelnik J, Hertrich K, Steinhauser-Andresen S, Hirschfelder U, Hofmann E. Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: an in vitro study. J Orofac Orthop. 2011;72:261–78.PubMedCrossRefGoogle Scholar
  178. 178.
    Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC. Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol. 2008;37:80–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan Martin Palomo
    • 1
    Email author
  • Hakan El
    • 2
  • Neda Stefanovic
    • 3
  • Mohamed Bazina
    • 4
  1. 1.Department of Orthodontics, Craniofacial Imaging Center, School of Dental MedicineCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Orthodontics, School of Dental MedicineHacettepe UniversityAnkaraTurkey
  3. 3.Department of Orthodontics, Faculty of Dental MedicineUniversity of BelgradeBelgradeSerbia
  4. 4.Division of Orthodontics, College of DentistryUniversity of KentuckyLexingtonUSA

Personalised recommendations