Advertisement

3D Imaging to Assess Growth and Treatment Effects

  • Leonardo Koerich
  • Eser Tufekci
  • Steven J. Lindauer
Chapter

Abstract

Cone beam computed tomography (CBCT) is a three-dimensional imaging mechanism that is being used more frequently in dentistry and across many dental specialties for diagnostic and treatment planning purposes. Additionally, CBCT may be used to evaluate growth and treatment changes in individual patients over time when accurate and precise superimposition techniques are applied appropriately.

Keywords

Superimposition Growth Treatment changes Diagnosis 3D Imaging 

References

  1. 1.
    McCance AM, Moss JP, Fright WR, James DR, Linney AD. A three dimensional analysis of soft and hard tissue changes following bimaxillary orthognathic surgery in skeletal III patients. Br J Oral Maxillofac Surg. 1992;30(5):305–12.CrossRefGoogle Scholar
  2. 2.
    McCance AM, Moss JP, Wright WR, Linney AD, James DR. A three-dimensional soft tissue analysis of 16 skeletal class III patients following bimaxillary surgery. Br J Oral Maxillofac Surg. 1992;30(4):221–32.CrossRefGoogle Scholar
  3. 3.
    Lagravere MO, Major PW, Carey J. Sensitivity analysis for plane orientation in three-dimensional cephalometric analysis based on superimposition of serial cone beam computed tomography images. Dentomaxillofac Radiol. 2010;39(7):400–8. https://doi.org/10.1259/dmfr/17319459.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kawamata A, Fujishita M, Nagahara K, Kanematu N, Niwa K, Langlais RP. Three-dimensional computed tomography evaluation of postsurgical condylar displacement after mandibular osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(4):371–6.CrossRefGoogle Scholar
  5. 5.
    Cevidanes LH, Bailey LJ, Tucker GR Jr, Styner MA, Mol A, Phillips CL, et al. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol. 2005;34(6):369–75. https://doi.org/10.1259/dmfr/17102411.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Koerich L, Burns D, Weissheimer A, Claus JD. Three-dimensional maxillary and mandibular regional superimposition using cone beam computed tomography: a validation study. Int J Oral Maxillofac Surg. 2016;45(5):662–9. https://doi.org/10.1016/j.ijom.2015.12.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Koerich L, Weissheimer A, de Menezes LM, Lindauer SJ. Rapid 3D mandibular superimposition for growing patients. Angle Orthod. 2017;87(3):473–9. https://doi.org/10.2319/072316-574.1.CrossRefGoogle Scholar
  8. 8.
    Nada RM, Maal TJ, Breuning KH, Berge SJ, Mostafa YA, Kuijpers-Jagtman AM. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches. PLoS One. 2011;6(2):e16520. https://doi.org/10.1371/journal.pone.0016520.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weissheimer A, Menezes LM, Koerich L, Pham J, Cevidanes LH. Fast three-dimensional superimposition of cone beam computed tomography for orthopaedics and orthognathic surgery evaluation. Int J Oral Maxillofac Surg. 2015;44(9):1188–96. https://doi.org/10.1016/j.ijom.2015.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee JH, Kim MJ, Kim SM, Kwon OH, Kim YK. The 3D CT superimposition method using image fusion based on the maximum mutual information algorithm for the assessment of oral and maxillofacial surgery treatment results. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(2):167–74. https://doi.org/10.1016/j.tripleo.2011.06.003.CrossRefPubMedGoogle Scholar
  11. 11.
    Almukhtar A, Ju X, Khambay B, McDonald J, Ayoub A. Comparison of the accuracy of voxel based registration and surface based registration for 3D assessment of surgical change following orthognathic surgery. PLoS One. 2014;9(4):e93402. https://doi.org/10.1371/journal.pone.0093402.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lemieux G, Carey JP, Flores-Mir C, Secanell M, Hart A, Lagravere MO. Precision and accuracy of suggested maxillary and mandibular landmarks with cone-beam computed tomography for regional superimpositions: An in vitro study. Am J Orthod Dentofac Orthop. 2016;149(1):67–75. https://doi.org/10.1016/j.ajodo.2015.06.025.CrossRefGoogle Scholar
  13. 13.
    Cevidanes LH, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JF. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofac Orthop. 2009;136(1):94–9. https://doi.org/10.1016/j.ajodo.2009.01.018.CrossRefGoogle Scholar
  14. 14.
    Ruellas AC, Yatabe MS, Souki BQ, Benavides E, Nguyen T, Luiz RR, et al. 3D Mandibular Superimposition: Comparison of Regions of Reference for Voxel-Based Registration. PLoS One. 2016;11(6):e0157625. https://doi.org/10.1371/journal.pone.0157625.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bjork A. Prediction of mandibular growth rotation. Am J Orthod. 1969;55(6):585–99.CrossRefGoogle Scholar
  16. 16.
    Bjork A. Facial growth in man, studied with the aid of metallic implants. Acta Odontol Scand. 1955;13(1):9–34.CrossRefGoogle Scholar
  17. 17.
    Bjork A. The use of metallic implants in the study of facial growth in children: method and application. Am J Phys Anthropol. 1968;29(2):243–54.CrossRefGoogle Scholar
  18. 18.
    Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofac Orthop. 2004;126(1):42–7. https://doi.org/10.1016/S0889540604002057.CrossRefGoogle Scholar
  19. 19.
    Chen G, Chen S, Zhang XY, Jiang RP, Liu Y, Shi FH, et al. A new method to evaluate the positional stability of a self-drilling miniscrew. Orthod Craniofac Res. 2015;18(3):125–33. https://doi.org/10.1111/ocr.12065.CrossRefPubMedGoogle Scholar
  20. 20.
    Ruellas AC, Huanca Ghislanzoni LT, Gomes MR, Danesi C, Lione R, Nguyen T, McNamara JA Jr, Cozza P, Franchi L, Cevidanes LHS. Comparison and reproducibility of 2 regions of reference for maxillary regional registration with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2016;149(4):533–42. https://doi.org/10.1016/j.ajodo.2015.09.026.CrossRefGoogle Scholar
  21. 21.
    Grybauskas S, Locs J, Salma I, Salms G, Berzina-Cimdina L. Volumetric analysis of implanted biphasic calcium phosphate/collagen composite by three-dimensional cone beam computed tomography head model superimposition. J Craniomaxillofac Surg. 2015;43(1):167–74. https://doi.org/10.1016/j.jcms.2014.11.003.CrossRefPubMedGoogle Scholar
  22. 22.
    de Paula LK, Ruellas ACO, Paniagua B, Styner M, Turvey T, Zhu H, Wang J, Cevidanes LHS. One-year assessment of surgical outcomes in class III patients using cone beam computed tomography. Int J Oral Maxillofac Surg. 2013;42(6):780–9. https://doi.org/10.1016/j.ijom.2013.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Weissheimer A, de Menezes LM, Mezomo M, Dias DM, de Lima EM, Rizzatto SM. Immediate effects of rapid maxillary expansion with Haas-type and hyrax-type expanders: a randomized clinical trial. Am J Orthod Dentofac Orthop. 2011;140(3):366–76. https://doi.org/10.1016/j.ajodo.2010.07.025.CrossRefGoogle Scholar
  24. 24.
    Oh KM, Seo SK, Park JE, Sim HS, Cevidanes LHS, Kim YJ, Park YH. Post-operative soft tissue changes in patients with mandibular prognathism after bimaxillary surgery. J Craniomaxillofac Surg. 2013;41(3):204–11. https://doi.org/10.1016/j.jcms.2012.09.001.CrossRefPubMedGoogle Scholar
  25. 25.
    Jabar N, Robinson W, Goto TK, Khambay BS. The validity of using surface meshes for evaluation of three-dimensional maxillary and mandibular surgical changes. Int J Oral Maxillofac Surg. 2015;44(7):914–20. https://doi.org/10.1016/j.ijom.2015.02.005.CrossRefPubMedGoogle Scholar
  26. 26.
    El-Beialy AR, Fayed MS, El-Bialy AM, Mostafa YA. Accuracy and reliability of cone-beam computed tomography measurements: Influence of head orientation. Am J Orthod Dentofac Orthop. 2011;140(2):157–65. https://doi.org/10.1016/j.ajodo.2010.03.030.CrossRefGoogle Scholar
  27. 27.
    Case CS. Dental orthopedia. Chicago, IL: C. S. Case Company; 1908.Google Scholar
  28. 28.
    Van Loon JAW. A new method for indicating normal and abnormal relations of the teeth to the facial lines. Dent Cosmos. 1915;57(9):973–83.Google Scholar
  29. 29.
    Van Loon JAW. A new method for indicating normal and abnormal relations of the teeth to the facial lines (continued from page 983). Dent Cosmos. 1915;57(10):1093–101.Google Scholar
  30. 30.
    Maal TJ, Plooij JM, Rangel FA, Mollemans W, Schutyser FA, Berge SJ. The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg. 2008;37(7):641–6. https://doi.org/10.1016/j.ijom.2008.04.012.CrossRefPubMedGoogle Scholar
  31. 31.
    Swennen GR, Mommaerts MY, Abeloos J, De Clercq C, Lamoral P, Neyt N, Casselman J, Schutyser F. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface. Int J Oral Maxillofac Surg. 2009;38(1):48–57. https://doi.org/10.1016/j.ijom.2008.11.006.CrossRefPubMedGoogle Scholar
  32. 32.
    Rangel FA, Maal TJ, Berge SJ, van Vlijmen OJ, Plooij JM, Schutyser F, Kuijpers-Jaqtman AM. Integration of digital dental casts in 3-dimensional facial photographs. Am J Orthod Dentofac Orthop. 2008;134(6):820–6. https://doi.org/10.1016/j.ajodo.2007.11.026.CrossRefGoogle Scholar
  33. 33.
    Plooij JM, Maal TJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Berge SJ. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg. 2011;40(4):341–52. https://doi.org/10.1016/j.ijom.2010.10.013.CrossRefPubMedGoogle Scholar
  34. 34.
    Gateno J, Xia JJ, Teichgraeber JF, Christensen AM, Lemoine JJ, Liebschner MA, Gliddon MJ, Briggs ME. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg. 2007;65(4):728–34. https://doi.org/10.1016/j.joms.2006.04.001.CrossRefPubMedGoogle Scholar
  35. 35.
    Uechi J, Okayama M, Shibata T, Muguruma T, Hayashi K, Endo K, Mizoguchi I. A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am J Orthod Dentofac Orthop. 2006;130(6):786–98. https://doi.org/10.1016/j.ajodo.2006.03.025.CrossRefGoogle Scholar
  36. 36.
    Deeb GR, Soliman O, Alsaad F, Jones P, Deluke D, Laskin DM. Simultaneous virtual planning implant surgical guides and immediate laboratory-fabricated provisionals: an impressionless technique. J Oral Implantol. 2016;42(4):363–9. https://doi.org/10.1563/aaid-joi-D-15-00158.CrossRefPubMedGoogle Scholar
  37. 37.
    Maino BG, Paoletto E, Lombardo L III, Siciliani G. A three-dimensional digital insertion guide for palatal miniscrew placement. J Clin Orthod. 2016;50(1):12–22.PubMedGoogle Scholar
  38. 38.
    Li Y, Jiang Y, Ye B, Hu J, Chen Q, Zhu S. Treatment of dentofacial deformities secondary to osteochondroma of the mandibular condyle using virtual surgical planning and 3-dimensional printed surgical templates. J Oral Maxillofac Surg. 2016;74(2):349–68. https://doi.org/10.1016/j.joms.2015.06.169.CrossRefPubMedGoogle Scholar
  39. 39.
    Lee RJ, Pham J, Choy M, Weissheimer A, Dougherty HL Jr, Sameshima GT, Tong H. Monitoring of typodont root movement via crown superimposition of single cone-beam computed tomography and consecutive intraoral scans. Am J Orthod Dentofac Orthop. 2014;145(3):399–409. https://doi.org/10.1016/j.ajodo.2013.12.011.CrossRefGoogle Scholar
  40. 40.
    Lee RJ, Weissheimer A, Pham J, Go L, de Menezes LM, Redmond WR, Loos JF, Sameshima GT, Tong H. Three-dimensional monitoring of root movement during orthodontic treatment. Am J Orthod Dentofac Orthop. 2015;147(1):132–42. https://doi.org/10.1016/j.ajodo.2014.10.010.CrossRefGoogle Scholar
  41. 41.
    Kaipatur NR, Flores-Mir C. Accuracy of computer programs in predicting orthognathic surgery soft tissue response. J Oral Maxillofac Surg. 2009;67(4):751–9. https://doi.org/10.1016/j.joms.2008.11.006.CrossRefPubMedGoogle Scholar
  42. 42.
    Peterman RJ, Jiang S, Johe R, Mukherjee PM. Accuracy of dolphin visual treatment objective (VTO) prediction software on class III patients treated with maxillary advancement and mandibular setback. Prog Orthod. 2016;17(1):19. https://doi.org/10.1186/s40510-016-0132-2.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leonardo Koerich
    • 1
  • Eser Tufekci
    • 2
  • Steven J. Lindauer
    • 2
  1. 1.Private PracticeCharlotteUSA
  2. 2.Department of OrthodonticsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations