Advertisement

Monoclonal Antibodies: From Structure to Therapeutic Application

  • Rong Deng
  • C. Andrew Boswell
  • Wendy S. Putnam
  • Meina T. Tang
  • Amit Garg
  • Chunze Li
  • Shan Chung
  • Sandhya GirishEmail author
Chapter

Abstract

The exciting field of therapeutic monoclonal antibodies (MABs) had its origins when Köhler and Milstein presented their murine hybridoma technology in 1975. This technology provides a reproducible method for producing MABs with unique target selectivity in almost unlimited quantities. In 1984, both scientists received the Nobel Prize for their scientific breakthrough, and their work is viewed as a key milestone in the history of MABs as therapeutic modalities and their other applications. Although it took some time until the first therapeutic MAB received FDA approval in 1986 (Orthoclone OKT3), MABs are now the standard of care in several disease areas. In particular, in oncology, transplantation, and inflammatory diseases, patients now have novel life-changing treatment alternatives for diseases that had very limited or nonexistent medical treatment options before the emergence of MABs. Today, more than 75 MABs and MAB derivatives are available for a variety of indications. The majority of approved biologic therapies are MABs, antibody-drug conjugates (ADCs), antibody fragments, and Fc fusion proteins. Technological evolutions have subsequently allowed much wider application of MABs thanks to the ability to generate mouse/human chimeric, humanized, and fully human MABs from antibodies of pure murine origin. In particular, the reduction of the xenogenic portion of the MAB structure decreased the immunogenic potential of murine MABs, allowing their wider application. MABs are generally well-tolerated drugs because of their target selectivity, thus avoiding unnecessary exposure to, and consequently activity in, non-target organs. This is particularly apparent in the field of oncology where MABs such as rituximab, trastuzumab, bevacizumab and immune-oncology MABs such as atezolizumab, pembrolizumab and nivolumab can offer a more favorable risk-benefit profile compared to common chemotherapeutic treatment regimens for some hematologic cancers and solid tumors.

Keywords

Monoclonal antibodies Antibody structure Antibody pharmacokinetics Antibody pharmacodynamics 

Notes

Acknowledgments

Editorial and technical support was provided by AnshinBiosolutions, Corp.

References

  1. Aarons L, Karlsson MO, Mentre F, Rombout F, Steimer JL, van Peer A (2001) Role of modelling and simulation in Phase I drug development. Eur J Pharm Sci 13(2):115–122PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agoram BM, Martin SW, van der Graaf PH (2007) The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov Today 12(23-24):1018–1024.  https://doi.org/10.1016/j.drudis.2007.10.002 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Albrecht H, DeNardo SJ (2006) Recombinant antibodies: from the laboratory to the clinic. Cancer Biother Radiopharm 21(4):285–304.  https://doi.org/10.1089/cbr.2006.21.285 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baert F, Noman M, Vermeire S, Van Assche G, DH G, Carbonez A, Rutgeerts P (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348(7):601–608PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y (2017) Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacometrics Syst Pharmacol 6(1):58–66.  https://doi.org/10.1002/psp4.12143 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR (1999) Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm 27(4):397–420PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54(6):1517–1528PubMedPubMedCentralGoogle Scholar
  8. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK (1995) Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55(20):4611–4622PubMedPubMedCentralGoogle Scholar
  9. Bazin-Redureau MI, Renard CB, Scherrmann JM (1997) Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab’)2 and Fab after intravenous administration in the rat. J Pharm Pharmacol 49(3):277–281PubMedCrossRefPubMedCentralGoogle Scholar
  10. Berger MA, Masters GR, Singleton J, Scully MS, Grimm LG, Soltis DA, Albone EF (2005) Pharmacokinetics, biodistribution, and radioimmunotherapy with monoclonal antibody 776.1 in a murine model of human ovarian cancer. Cancer Biother Radiopharm 20(6):589–602PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, Shihadeh V, Ulufatu S, Foreman O, Lu Y, DeVoss J, van der Brug M, Watts RJ (2015) Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron 88(2):289–297.  https://doi.org/10.1016/j.neuron.2015.09.036 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bittner B, Richter WF, Hourcade-Potelleret F, McIntyre C, Herting F, Zepeda ML, Schmidt J (2012) Development of a subcutaneous formulation for trastuzumab - nonclinical and clinical bridging approach to the approved intravenous dosing regimen. Arzneimittelforschung 62(9):401–409.  https://doi.org/10.1055/s-0032-1321831 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boswell CA, Brechbiel MW (2007) Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol 34(7):757–778.  https://doi.org/10.1016/j.nucmedbio.2007.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Boswell CA, Ferl GZ, Mundo EE, Schweiger MG, Marik J, Reich MP, Theil FP, Fielder PJ, Khawli LA (2010a) Development and evaluation of a novel method for preclinical measurement of tissue vascular volume. Mol Pharm 7(5):1848–1857.  https://doi.org/10.1021/mp100183k CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA (2010b) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21(12):2153–2163.  https://doi.org/10.1021/bc100261d CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boswell CA, Bumbaca D, Fielder PJ, Khawli LA (2012) Compartmental tissue distribution of antibody therapeutics: experimental approaches and interpretations. AAPS J 14(3):612–618.  https://doi.org/10.1208/s12248-012-9374-1 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boswell CA, Mundo EE, Johnstone B, Ulufatu S, Schweiger MG, Bumbaca D, Fielder PJ, Prabhu S, Khawli LA (2013) Vascular physiology and protein disposition in a preclinical model of neurodegeneration. Mol Pharm 10(5):1514–1521.  https://doi.org/10.1021/mp3004786 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Boswell CA, Mundo EE, Ulufatu S, Bumbaca D, Cahaya HS, Majidy N, Van Hoy M, Schweiger MG, Fielder PJ, Prabhu S, Khawli LA (2014) Comparative physiology of mice and rats: radiometric measurement of vascular parameters in rodent tissues. Mol Pharm 11(5):1591–1598.  https://doi.org/10.1021/mp400748t CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boxenbaum H, Battle M (1995) Effective half-life in clinical pharmacology. J Clin Pharmacol 35(8):763–766PubMedCrossRefPubMedCentralGoogle Scholar
  20. Brambell FW, Hemmings WA, Morris IG (1964) A theoretical model of gamma-globulin catabolism. Nature 203:1352–1354PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bugelski PJ, Herzyk DJ, Rehm S, Harmsen AG, Gore EV, Williams DM, Maleeff BE, Badger AM, Truneh A, O’Brien SR, Macia RA, Wier PJ, Morgan DG, Hart TK (2000) Preclinical development of keliximab, a primatized anti-CD4 monoclonal antibody, in human CD4 transgenic mice: characterization of the model and safety studies. Hum Exp Toxicol 19(4):230–243.  https://doi.org/10.1191/096032700678815783 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bumbaca Yadav D, Sharma VK, Boswell CA, Hotzel I, Tesar D, Shang Y, Ying Y, Fischer SK, Grogan JL, Chiang EY, Urban K, Ulufatu S, Khawli LA, Prabhu S, Joseph S, Kelley RF (2015) Evaluating the use of antibody variable region (Fv) charge as a risk assessment tool for predicting typical cynomolgus monkey pharmacokinetics. J Biol Chem 290(50):29732–29741.  https://doi.org/10.1074/jbc.M115.692434 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bumbaca D, Wong A, Drake E, Reyes AE, Lin BC, Stephan JP, Desnoyers L, Shen BQ, Dennis MS (2011) Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. MAbs 3(4):376–386PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bumbaca D, Xiang H, Boswell CA, Port RE, Stainton SL, Mundo EE, Ulufatu S, Bagri A, Theil FP, Fielder PJ, Khawli LA, Shen BQ (2012) Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice. Br J Pharmacol 166(1):368–377.  https://doi.org/10.1111/j.1476-5381.2011.01777.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bunescu A, Seideman P, Lenkei R, Levin K, Egberg N (2004) Enhanced Fcgamma receptor I, alphaMbeta2 integrin receptor expression by monocytes and neutrophils in rheumatoid arthritis: interaction with platelets. J Rheumatol 31(12):2347–2355PubMedPubMedCentralGoogle Scholar
  26. Cartron G, Watier H, Golay J, Solal-Celigny P (2004) From the bench to the bedside: ways to improve rituximab efficacy. Blood 104(9):2635–2642PubMedCrossRefPubMedCentralGoogle Scholar
  27. CDER (2014) Clinical pharmacology and biopharmaceutical reviews BLA 125522Google Scholar
  28. CDER (2015) Addendum clinical pharmacology review BLA 125509. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/125509Orig1s000ClinPharmR.pdf. Accessed May 8, 2018
  29. Chen Y, Samineni D, Mukadam S, Wong H, Shen BQ, Lu D, Girish S, Hop C, Jin JY, Li C (2015) Physiologically based pharmacokinetic modeling as a tool to predict drug interactions for antibody-drug conjugates. Clin Pharmacokinet 54(1):81–93.  https://doi.org/10.1007/s40262-014-0182-x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chen SC, Kagedal M, Gao Y, Wang B, Harle-Yge ML, Girish S, Jin J, Li C (2017) Population pharmacokinetics of trastuzumab emtansine in previously treated patients with HER2-positive advanced gastric cancer (AGC). Cancer Chemother Pharmacol 80(6):1147–1159.  https://doi.org/10.1007/s00280-017-3443-1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chien JY, Friedrich S, Heathman MA, de Alwis DP, Sinha V (2005) Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation. AAPS J 7(3):E544–E559PubMedPubMedCentralCrossRefGoogle Scholar
  32. Clarke J, Leach W, Pippig S, Joshi A, Wu B, House R, Beyer J (2004) Evaluation of a surrogate antibody for preclinical safety testing of an anti-CD11a monoclonal antibody. Regul Toxicol Pharmacol 40(3):219–226PubMedCrossRefPubMedCentralGoogle Scholar
  33. Coffey GP, Fox JA, Pippig S, Palmieri S, Reitz B, Gonzales M, Bakshi A, Padilla-Eagar J, Fielder PJ (2005) Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice. Drug Metab Dispos 33(5):623–629PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cohenuram M, Saif MW (2007) Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anti-Cancer Drugs 18(1):7–15PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cornillie F, Shealy D, D’Haens G, Geboes K, Van Assche G, Ceuppens J, Wagner C, Schaible T, Plevy SE, Targan SR, Rutgeerts P (2001) Infliximab induces potent anti-inflammatory and local immunomodulatory activity but no systemic immune suppression in patients with Crohn’s disease. Aliment Pharmacol Ther 15(4):463–473PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P, Watier H, Thibault G (2004) Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 64(13):4664–4669PubMedCrossRefPubMedCentralGoogle Scholar
  37. Danilov SM, Gavrilyuk VD, Franke FE, Pauls K, Harshaw DW, McDonald TD, Miletich DJ, Muzykantov VR (2001) Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am J Physiol Lung Cell Mol Physiol 280(6):L1335–L1347PubMedCrossRefGoogle Scholar
  38. Davda JP, Dodds MG, Gibbs MA, Wisdom W, Gibbs J (2014) A model-based meta-analysis of monoclonal antibody pharmacokinetics to guide optimal first-in-human study design. MAbs 6(4):1094–1102.  https://doi.org/10.4161/mabs.29095 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Davis JD, Bansal A, Hassman D, Akinlade B, Li M, Li Z, Swanson B, Hamilton JD, DiCioccio AT (2018) Evaluation of potential disease-mediated drug-drug interaction in patients with moderate-to-severe atopic dermatitis receiving dupilumab. Clin Pharmacol Ther.  https://doi.org/10.1002/cpt.1058 CrossRefGoogle Scholar
  40. Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1(5):435–461PubMedCrossRefGoogle Scholar
  41. Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S (2011) Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs 3(1):61–66PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dias C, Abosaleem B, Crispino C, Gao B, Shaywitz A (2015a) Erratum to: tolerability of high-volume subcutaneous injections of a viscous placebo buffer: a randomized, crossover study in healthy subjects. AAPS PharmSciTech 16(6):1500.  https://doi.org/10.1208/s12249-015-0324-y CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dias C, Abosaleem B, Crispino C, Gao B, Shaywitz A (2015b) Tolerability of high-volume subcutaneous injections of a viscous placebo buffer: a randomized, crossover study in healthy subjects. AAPS PharmSciTech 16(5):1101–1107.  https://doi.org/10.1208/s12249-015-0288-y CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, Blumberg RS, Lencer WI (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104(7):903–911PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dirks NL, Meibohm B (2010) Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(10):633–659.  https://doi.org/10.2165/11535960-000000000-00000 CrossRefGoogle Scholar
  46. Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu CP, Stouch BJ, Hurh E, Gibbs MA (2011) Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet 50(2):131–142.  https://doi.org/10.2165/11537430-000000000-00000 CrossRefGoogle Scholar
  47. Dostalek M, Prueksaritanont T, Kelley RF (2017) Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. MAbs 9(5):756–766.  https://doi.org/10.1080/19420862.2017.1323160 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dowell JA, Korth-Bradley J, Liu H, King SP, Berger MS (2001) Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol 41(11):1206–1214PubMedCrossRefPubMedCentralGoogle Scholar
  49. Druet P, Bariety J, Laliberte F, Bellon B, Belair MF, Paing M (1978) Distribution of heterologous antiperoxidase antibodies and their fragments in the superficial renal cortex of normal Wistar-Munich rat: an ultrastructural study. Lab Investig 39(6):623–631PubMedPubMedCentralGoogle Scholar
  50. Duconge J, Castillo R, Crombet T, Alvarez D, Matheu J, Vecino G, Alonso K, Beausoleil I, Valenzuela C, Becquer MA, Fernandez-Sanchez E (2004) Integrated pharmacokinetic-pharmacodynamic modeling and allometric scaling for optimizing the dosage regimen of the monoclonal ior EGF/r3 antibody. Eur J Pharm Sci 21(2-3):261–270PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, Davis HM, Zhou H (2009) Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol 65(12):1211–1228.  https://doi.org/10.1007/s00228-009-0718-4 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Fasanmade AA, Adedokun OJ, Olson A, Strauss R, Davis HM (2010) Serum albumin concentration: a predictive factor of infliximab pharmacokinetics and clinical response in patients with ulcerative colitis. Int J Clin Pharmacol Ther 48(5):297–308PubMedCrossRefPubMedCentralGoogle Scholar
  53. FDA (1999) Guidance for industry: population pharmacokineticsGoogle Scholar
  54. Ferl GZ, Wu AM, DiStefano JJ (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33(11):1640–1652PubMedCrossRefPubMedCentralGoogle Scholar
  55. Frost GI (2007) Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv 4(4):427–440.  https://doi.org/10.1517/17425247.4.4.427 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Garg A, Quartino A, Li J, Jin J, Wada DR, Li H, Cortes J, McNally V, Ross G, Visich J, Lum B (2014) Population pharmacokinetic and covariate analysis of pertuzumab, a HER2-targeted monoclonal antibody, and evaluation of a fixed, non-weight-based dose in patients with a variety of solid tumors. Cancer Chemother Pharmacol 74(4):819–829.  https://doi.org/10.1007/s00280-014-2560-3 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, Bekker P, Study G (2004) Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 50(5):1412–1419.  https://doi.org/10.1002/art.20221 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26(3):690–696PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gibiansky L, Frey N (2012) Linking interleukin-6 receptor blockade with tocilizumab and its hematological effects using a modeling approach. J Pharmacokinet Pharmacodyn 39(1):5–16.  https://doi.org/10.1007/s10928-011-9227-z CrossRefPubMedPubMedCentralGoogle Scholar
  60. Gibiansky L, Gibiansky E (2009) Target-mediated drug disposition model: relationships with indirect response models and application to population PK-PD analysis. J Pharmacokinet Pharmacodyn 36(4):341–351.  https://doi.org/10.1007/s10928-009-9125-9 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Gibiansky L, Sutjandra L, Doshi S, Zheng J, Sohn W, Peterson MC, Jang GR, Chow AT, Perez-Ruixo JJ (2012) Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin Pharmacokinet 51(4):247–260.  https://doi.org/10.2165/11598090-000000000-00000 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gillies SD, Lan Y, Lo KM, Super M, Wesolowski J (1999) Improving the efficacy of antibody-interleukin 2 fusion proteins by reducing their interaction with Fc receptors. Cancer Res 59(9):2159–2166PubMedPubMedCentralGoogle Scholar
  63. Gillies SD, Lo KM, Burger C, Lan Y, Dahl T, Wong WK (2002) Improved circulating half-life and efficacy of an antibody-interleukin 2 immunocytokine based on reduced intracellular proteolysis. Clin Cancer Res 8(1):210–216PubMedPubMedCentralGoogle Scholar
  64. Girish G, Li C (2015) Clinical pharmacology and assay consideration for characterizing pharmacokinetics and understanding efficacy and safety of antibody-drug conjugates. In: Gorovits B, Shord S (eds) Novel methods in bioanalysis and characterization of antibody-drug conjugate. Future Science Ltd, London, pp 36–55CrossRefGoogle Scholar
  65. Girish S, Martin SW, Peterson MC et al (2011) AAPS workshop report: strategies to address therapeutic protein–drug interactions during clinical development. APPS J 3:405–416Google Scholar
  66. Goldsby RA, Kindt TJ, Osborine BA, Kuby J (1999) Immunology, 4th edn. W.H. Freeman and Company, New YorkGoogle Scholar
  67. Gottlieb AB, Miller B, Lowe N, Shapiro W, Hudson C, Bright R, Ling M, Magee A, McCall CO, Rist T, Dummer W, Walicke P, Bauer RJ, White M, Garovoy M (2003) Subcutaneously administered efalizumab (anti-CD11a) improves signs and symptoms of moderate to severe plaque psoriasis. J Cutan Med Surg 7(3):198–207PubMedPubMedCentralGoogle Scholar
  68. Han K, Jin J, Maia M, Lowe J, Sersch MA, Allison DE (2014) Lower exposure and faster clearance of bevacizumab in gastric cancer and the impact of patient variables: analysis of individual data from AVAGAST phase III trial. AAPS J 16(5):1056–1063.  https://doi.org/10.1208/s12248-014-9631-6 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63(5):548–561.  https://doi.org/10.1111/j.1365-2125.2006.02803.x CrossRefPubMedPubMedCentralGoogle Scholar
  70. Herceptin (Trastuzumab) Prescribing Information (2006) South San Francisco, CA, USAGoogle Scholar
  71. Hervey PS, Keam SJ (2006) Abatacept. BioDrugs 20(1):53–61PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176(1):346–356PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hochhaus G, Brookman L, Fox H, Johnson C, Matthews J, Ren S, Deniz Y (2003) Pharmacodynamics of omalizumab: implications for optimised dosing strategies and clinical efficacy in the treatment of allergic asthma. Curr Med Res Opin 19(6):491–498.  https://doi.org/10.1185/030079903125002171 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Holmes D (2011) Buy buy bispecific antibodies. Nat Rev Drug Discov 10(11):798–800.  https://doi.org/10.1038/nrd3581 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Honma W, Gautier A, Paule I, Yamaguchi M, Lowe PJ (2016) Ethnic sensitivity assessment of pharmacokinetics and pharmacodynamics of omalizumab with dosing table expansion. Drug Metab Pharmacokinet 31(3):173–184.  https://doi.org/10.1016/j.dmpk.2015.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hooks MA, Wade CS, Millikan WJ Jr (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11(1):26–37PubMedPubMedCentralGoogle Scholar
  77. Huang SM, Zhao H, Lee JI, Reynolds K, Zhang L, Temple R, Lesko LJ (2010) Therapeutic protein-drug interactions and implications for drug development. Clin Pharmacol Ther 87(4):497–503.  https://doi.org/10.1038/clpt.2009.308 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Humira (Adalimumab) Prescribing Information (2007) Chicago, IL, USAGoogle Scholar
  79. ICH (1997a) ICH harmonized tripartite guideline M3: nonclinical safety studies for the conduct of human clinical trials for pharmaceuticalsGoogle Scholar
  80. ICH (1997b) ICH harmonized tripartite guideline S6: preclinical safety evaluation of biotechnology-derived pharmaceuticalsGoogle Scholar
  81. Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, Hattori K (2010) Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 23(5):385–392.  https://doi.org/10.1093/protein/gzq009 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jolling K, Perez Ruixo JJ, Hemeryck A, Vermeulen A, Greway T (2005) Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin. Eur J Pharm Sci 24(5):465–475PubMedCrossRefPubMedCentralGoogle Scholar
  83. Joshi A, Bauer R, Kuebler P, White M, Leddy C, Compton P, Garovoy M, Kwon P, Walicke P, Dedrick R (2006) An overview of the pharmacokinetics and pharmacodynamics of efalizumab: a monoclonal antibody approved for use in psoriasis. J Clin Pharmacol 46(1):10–20PubMedCrossRefPubMedCentralGoogle Scholar
  84. Junghans RP (1997) Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res 16(1):29–57PubMedCrossRefPubMedCentralGoogle Scholar
  85. Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 93(11):5512–5516PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kagan L, Abraham AK, Harrold JM, Mager DE (2010) Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons. Pharm Res 27(5):920–932.  https://doi.org/10.1007/s11095-010-0098-6 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kagedal M, Gibiansky L, Xu J, Wang X, Samineni D, Chen SC, Lu D, Agarwal P, Wang B, Saad O, Koppada N, Fine BM, Jin JY, Girish S, Li C (2017) Platform model describing pharmacokinetic properties of vc-MMAE antibody-drug conjugates. J Pharmacokinet Pharmacodyn 44(6):537–548.  https://doi.org/10.1007/s10928-017-9544-y CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kairemo KJ, Lappalainen AK, Kaapa E, Laitinen OM, Hyytinen T, Karonen SL, Gronblad M (2001) In vivo detection of intervertebral disk injury using a radiolabeled monoclonal antibody against keratan sulfate. J Nucl Med 42(3):476–482PubMedPubMedCentralGoogle Scholar
  89. Kamath AV (2016) Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov Today Technol 21-22:75–83.  https://doi.org/10.1016/j.ddtec.2016.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kang YK, Ryu MH, Yoo C, Ryoo BY, Kim HJ, Lee JJ, Nam BH, Ramaiya N, Jagannathan J, Demetri GD (2013) Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol 14(12):1175–1182.  https://doi.org/10.1016/S1470-2045(13)70453-4 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kelley SK, Gelzleichter T, Xie D, Lee WP, Darbonne WC, Qureshi F, Kissler K, Oflazoglu E, Grewal IS (2006) Preclinical pharmacokinetics, pharmacodynamics, and activity of a humanized anti-CD40 antibody (SGN-40) in rodents and non-human primates. Br J Pharmacol 148(8):1116–1123PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kenny JR, Liu MM, Chow AT, Earp JC, Evers R, Slatter JG, Wang DD, Zhang L, Zhou H (2013) Therapeutic protein drug-drug interactions: navigating the knowledge gaps-highlights from the 2012 AAPS NBC roundtable and IQ consortium/FDA workshop. AAPS J 15(4):933–940.  https://doi.org/10.1208/s12248-013-9495-1 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, Joshi A, Harris RJ, Motchnik P (2010) Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs 2(6):613–624.  https://doi.org/10.4161/mabs.2.6.13333 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kirschbrown WP, Quartino AL, Li H, Mangat R, Wada DR, Garg A, Jin JY, Lum BL (2017) Development of a population pharmacokinetic (PPK) model of intravenous (IV) trastuzumab in patients with a variety of solid tumors to support dosing and treatment recommendations. J Clin Oncol 35(Suppl):2525CrossRefGoogle Scholar
  95. Kleiman NS, Raizner AE, Jordan R, Wang AL, Norton D, Mace KF, Joshi A, Coller BS, Weisman HF (1995) Differential inhibition of platelet aggregation induced by adenosine diphosphate or a thrombin receptor-activating peptide in patients treated with bolus chimeric 7E3 Fab: implications for inhibition of the internal pool of GPIIb/IIIa receptors. J Am Coll Cardiol 26(7):1665–1671.  https://doi.org/10.1016/0735-1097(95)00391-6 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kolar GR, Capra JD (2003) Immunoglobulins: structure and function. In: Paul WE (ed) Fundamental immunology, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  98. Koon HB, Severy P, Hagg DS, Butler K, Hill T, Jones AG, Waldmann TA, Junghans RP (2006) Antileukemic effect of daclizumab in CD25 high-expressing leukemias and impact of tumor burden on antibody dosing. Leuk Res 30(2):190–203PubMedCrossRefPubMedCentralGoogle Scholar
  99. Kovalenko P, DiCioccio AT, Davis JD, Li M, Ardeleanu M, Graham N, Soltys R (2016) Exploratory population PK analysis of dupilumab, a fully human monoclonal antibody against IL-4ralpha, in atopic dermatitis patients and normal volunteers. CPT Pharmacometrics Syst Pharmacol 5(11):617–624.  https://doi.org/10.1002/psp4.12136 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kovarik JM, Nashan B, Neuhaus P, Clavien PA, Gerbeau C, Hall ML, Korn A (2001) A population pharmacokinetic screen to identify demographic-clinical covariates of basiliximab in liver transplantation. Clin Pharmacol Ther 69(4):201–209PubMedCrossRefPubMedCentralGoogle Scholar
  101. Krueger JG (2002) The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol 46(1):1–23PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kuus-Reichel K, Grauer LS, Karavodin LM, Knott C, Krusemeier M, Kay NE (1994) Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol 1(4):365–372PubMedPubMedCentralGoogle Scholar
  103. Lee H, Kimko HC, Rogge M, Wang D, Nestorov I, Peck CC (2003) Population pharmacokinetic and pharmacodynamic modeling of etanercept using logistic regression analysis. Clin Pharmacol Ther 73(4):348–365PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lee JI, Zhang L, Men AY, Kenna LA, Huang SM (2010) CYP-mediated therapeutic protein-drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet 49(5):295–310.  https://doi.org/10.2165/11319980-000000000-00000 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Li B, Tesar D, Boswell CA, Cahaya HS, Wong A, Zhang J, Meng YG, Eigenbrot C, Pantua H, Diao J, Kapadia SB, Deng R, Kelley RF (2014) Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge. MAbs 6(5):1255–1264.  https://doi.org/10.4161/mabs.29809 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Li H, Yu J, Liu C, Liu J, Subramaniam S, Zhao H, Blumenthal GM, Turner DC, Li C, Ahamadi M, de Greef R, Chatterjee M, Kondic AG, Stone JA, Booth BP, Keegan P, Rahman A, Wang Y (2017) Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response. J Pharmacokinet Pharmacodyn 44(5):403–414.  https://doi.org/10.1007/s10928-017-9528-y CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lin YS, Nguyen C, Mendoza JL, Escandon E, Fei D, Meng YG, Modi NB (1999) Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 288(1):371–378PubMedPubMedCentralGoogle Scholar
  108. Ling J, Zhou H, Jiao Q, Davis HM (2009) Interspecies scaling of therapeutic monoclonal antibodies: initial look. J Clin Pharmacol 49(12):1382–1402.  https://doi.org/10.1177/0091270009337134 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Liu J, Wang Y, Zhao L (2015) Assessment of exposure-response (E-R) and cse-control (C-C) analyses in oncology using simulation based approach. In: Am Conf. Pharmacometrics Ann MeetingGoogle Scholar
  110. Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93(11):2645–2668PubMedCrossRefPubMedCentralGoogle Scholar
  111. Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, Sloand JA, Rosenblatt J, Sanz I (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50(8):2580–2589PubMedCrossRefPubMedCentralGoogle Scholar
  112. LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX (2011) Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 17(20):6437–6447.  https://doi.org/10.1158/1078-0432.CCR-11-0762 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Lowe PJ, Georgiou P, Canvin J (2015) Revision of omalizumab dosing table for dosing every 4 instead of 2 weeks for specific ranges of bodyweight and baseline IgE. Regul Toxicol Pharmacol 71(1):68–77.  https://doi.org/10.1016/j.yrtph.2014.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Lu D, Burris HA, Wang B, Dees EC, Cortes J, Joshi A, Gupta M, Yi JH, Chu YW, Shih T, Fang L, Girish S (2012) Drug interaction potential of trastuzumab emtansine (T-DM1) combined with pertuzumab in patients with HER2-positive metastatic breast cancer. Curr Drug Metab 13(7):911–922PubMedCrossRefPubMedCentralGoogle Scholar
  115. Lu D, Girish S, Gao Y, Wang B, Yi JH, Guardino E, Samant M, Cobleigh M, Rimawi M, Conte P, Jin JY (2014) Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer: clinical implications of the effect of covariates. Cancer Chemother Pharmacol 74(2):399–410.  https://doi.org/10.1007/s00280-014-2500-2 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, Rodriguez R, Chow A (2009) Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol 49(10):1142–1156.  https://doi.org/10.1177/0091270009344989 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Mager DE, Mascelli MA, Kleiman NS, Fitzgerald DJ, Abernethy DR (2003) Simultaneous modeling of abciximab plasma concentrations and ex vivo pharmacodynamics in patients undergoing coronary angioplasty. J Pharmacol Exp Ther 307(3):969–976.  https://doi.org/10.1124/jpet.103.057299 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mager DE, Woo S, Jusko WJ (2009) Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 24(1):16–24PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mahmood I (2005) Prediction of concentration-time profiles in humans. Pine House Publisher, RockvilleGoogle Scholar
  120. Mahmood I (2009) Pharmacokinetic allometric scaling of antibodies: application to the first-in-human dose estimation. J Pharm Sci 98(10):3850–3861.  https://doi.org/10.1002/jps.21682 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Mahmood I, Green MD (2005) Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet 44(4):331–347PubMedCrossRefPubMedCentralGoogle Scholar
  122. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, Antoni C, Leeb B, Elliott MJ, Woody JN, Schaible TF, Feldmann M (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41(9):1552–1563.  https://doi.org/10.1002/1529-0131(199809)41:9<1552::AID-ART5>3.0.CO;2-W CrossRefGoogle Scholar
  123. Mandikian D, Takahashi N, Lo AA, Li J, Eastham-Anderson J, Slaga D, Ho J, Hristopoulos M, Clark R, Totpal K, Lin K, Joseph SB, Dennis MS, Prabhu S, Junttila TT, Boswell CA (2018) Relative target affinities of T-cell-dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol Cancer Ther 17(4):776–785.  https://doi.org/10.1158/1535-7163.MCT-17-0657 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Martin-Jimenez T, Riviere JE (2002) Mixed-effects modeling of the interspecies pharmacokinetic scaling of oxytetracycline. J Pharm Sci 91(2):331–341PubMedCrossRefPubMedCentralGoogle Scholar
  125. McClurkan MB, Valentine JL, Arnold L, Owens SM (1993) Disposition of a monoclonal anti-phencyclidine Fab fragment of immunoglobulin G in rats. J Pharmacol Exp Ther 266(3):1439–1445PubMedPubMedCentralGoogle Scholar
  126. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833PubMedCrossRefGoogle Scholar
  127. Medesan C, Matesoi D, Radu C, Ghetie V, Ward ES (1997) Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 158(5):2211–2217PubMedPubMedCentralGoogle Scholar
  128. Meibohm B, Derendorf H (2002) Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 91(1):18–31CrossRefGoogle Scholar
  129. Meijer RT, Koopmans RP, ten Berge IJ, Schellekens PT (2002) Pharmacokinetics of murine anti-human CD3 antibodies in man are determined by the disappearance of target antigen. J Pharmacol Exp Ther 300(1):346–353PubMedCrossRefPubMedCentralGoogle Scholar
  130. Meredith PA, Elliott HL, Donnelly R, Reid JL (1991) Dose-response clarification in early drug development. J Hypertens Suppl 9(6):S356–S357PubMedCrossRefPubMedCentralGoogle Scholar
  131. Morris EC, Rebello P, Thomson KJ, Peggs KS, Kyriakou C, Goldstone AH, Mackinnon S, Hale G (2003) Pharmacokinetics of alemtuzumab used for in vivo and in vitro T-cell depletion in allogeneic transplantations: relevance for early adoptive immunotherapy and infectious complications. Blood 102(1):404–406.  https://doi.org/10.1182/blood-2002-09-2687 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mortensen DL, Walicke PA, Wang X, Kwon P, Kuebler P, Gottlieb AB, Krueger JG, Leonardi C, Miller B, Joshi A (2005) Pharmacokinetics and pharmacodynamics of multiple weekly subcutaneous efalizumab doses in patients with plaque psoriasis. J Clin Pharmacol 45(3):286–298PubMedCrossRefPubMedCentralGoogle Scholar
  133. Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies--mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10(1):84–96PubMedPubMedCentralGoogle Scholar
  134. Mould DR, Davis CB, Minthorn EA, Kwok DC, Elliott MJ, Luggen ME, Totoritis MC (1999) A population pharmacokinetic-pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther 66(3):246–257PubMedCrossRefPubMedCentralGoogle Scholar
  135. den Broeder A, van de Putte L, Rau R, Schattenkirchner M, Van Riel P, Sander O, Binder C, Fenner H, Bankmann Y, Velagapudi R, Kempeni J, Kupper H (2002) A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol 29(11):2288–2298Google Scholar
  136. Nakakura EK, McCabe SM, Zheng B, Shorthouse RA, Scheiner TM, Blank G, Jardieu PM, Morris RE (1993) Potent and effective prolongation by anti-LFA-1 monoclonal antibody monotherapy of non-primarily vascularized heart allograft survival in mice without T cell depletion. Transplantation 55(2):412–417PubMedPubMedCentralGoogle Scholar
  137. Nestorov I, Zitnik R, Ludden T (2004) Population pharmacokinetic modeling of subcutaneously administered etanercept in patients with psoriasis. J Pharmacokinet Pharmacodyn 31(6):463–490PubMedCrossRefPubMedCentralGoogle Scholar
  138. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ (2005) Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22(7):1088–1100PubMedCrossRefPubMedCentralGoogle Scholar
  139. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23(1):95–103PubMedCrossRefPubMedCentralGoogle Scholar
  140. Norman DJ, Chatenoud L, Cohen D, Goldman M, Shield CF 3rd (1993) Consensus statement regarding OKT3-induced cytokine-release syndrome and human antimouse antibodies. Transplant Proc 25(2 Suppl 1):89–92PubMedPubMedCentralGoogle Scholar
  141. Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13(12):1551–1559PubMedCrossRefPubMedCentralGoogle Scholar
  142. Oitate M, Masubuchi N, Ito T, Yabe Y, Karibe T, Aoki T, Murayama N, Kurihara A, Okudaira N, Izumi T (2011) Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug Metab Pharmacokinet 26(4):423–430PubMedCrossRefPubMedCentralGoogle Scholar
  143. Page MM, Watts GF (2015) Evolocumab in the treatment of dyslipidemia: pre-clinical and clinical pharmacology. Expert Opin Drug Metab Toxicol 11(9):1505–1515.  https://doi.org/10.1517/17425255.2015.1073712 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Papp K, Bissonnette R, Krueger JG, Carey W, Gratton D, Gulliver WP, Lui H, Lynde CW, Magee A, Minier D, Ouellet JP, Patel P, Shapiro J, Shear NH, Kramer S, Walicke P, Bauer R, Dedrick RL, Kim SS, White M, Garovoy MR (2001) The treatment of moderate to severe psoriasis with a new anti-CD11a monoclonal antibody. J Am Acad Dermatol 45(5):665–674PubMedCrossRefPubMedCentralGoogle Scholar
  145. Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, Presta LG, Meng YG, Roopenian DC (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18(12):1759–1769PubMedCrossRefPubMedCentralGoogle Scholar
  146. Prabhu S, Boswell CA, Leipold D, Khawli LA, Li D, Lu D, Theil FP, Joshi A, Lum BL (2011) Antibody delivery of drugs and radionuclides: factors influencing clinical pharmacology. Ther Deliv 2(6):769–791PubMedCrossRefPubMedCentralGoogle Scholar
  147. Presta LG (2002) Engineering antibodies for therapy. Curr Pharm Biotechnol 3(3):237–256PubMedCrossRefPubMedCentralGoogle Scholar
  148. Presta LG, Shields RL, Namenuk AK, Hong K, Meng YG (2002) Engineering therapeutic antibodies for improved function. Biochem Soc Trans 30(4):487–490PubMedCrossRefPubMedCentralGoogle Scholar
  149. Putnam WS, Prabhu S, Zheng Y, Subramanyam M, Wang YM (2010) Pharmacokinetic, pharmacodynamic and immunogenicity comparability assessment strategies for monoclonal antibodies. Trends Biotechnol 28(10):509–516.  https://doi.org/10.1016/j.tibtech.2010.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Raptiva (Efalizumab) [Prescribing Information] (2004) South San Francisco, Calif: Genentech, IncGoogle Scholar
  151. Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ, Eden PA, Anderson CL (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170(7):3528–3533PubMedCrossRefPubMedCentralGoogle Scholar
  152. Roskos LK, Davis CG, Schwab GM (2004) The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev Res 61:108–120CrossRefGoogle Scholar
  153. Ryman JT, Meibohm B (2017) Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol 6(9):576–588.  https://doi.org/10.1002/psp4.12224 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, Tanaka E, Muto A, Kojima T, Kitazawa T, Yoshihashi K, Harada A, Funaki M, Haraya K, Tachibana T, Suzuki S, Esaki K, Nabuchi Y, Hattori K (2013) Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One 8(2):e57479.  https://doi.org/10.1371/journal.pone.0057479 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S (2011) Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther 89(5):735–740.  https://doi.org/10.1038/clpt.2011.35 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Schror K, Weber AA (2003) Comparative pharmacology of GP IIb/IIIa antagonists. J Thromb Thrombolysis 15(2):71–80PubMedCrossRefPubMedCentralGoogle Scholar
  157. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86.  https://doi.org/10.1007/s10928-011-9232-2 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Sheiner LB (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61(3):275–291PubMedCrossRefPubMedCentralGoogle Scholar
  159. Sheiner L, Wakefield J (1999) Population modelling in drug development. Stat Methods Med Res 8(3):183–193PubMedCrossRefPubMedCentralGoogle Scholar
  160. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sifontis NM, Benedetti E, Vasquez EM (2002) Clinically significant drug interaction between basiliximab and tacrolimus in renal transplant recipients. Transplant Proc 34(5):1730–1732PubMedCrossRefPubMedCentralGoogle Scholar
  162. Simister NE, Mostov KE (1989a) Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54(Pt 1):571–580PubMedCrossRefPubMedCentralGoogle Scholar
  163. Simister NE, Mostov KE (1989b) An Fc receptor structurally related to MHC class I antigens. Nature 337(6203):184–187PubMedCrossRefGoogle Scholar
  164. Simulect (Basiliximab) Prescribing Information (2005) East Hanover, NJ, USAGoogle Scholar
  165. Slatter JG, Wienkers LC, Dickmann LC (2013) Drug interactions of cytokines and anticytokine therapeutic proteins. Drug-drug interactions for therapeutics biologics. Wiley, HobokenGoogle Scholar
  166. Spiekermann GM, Finn PW, Ward ES, Dumont J, Dickinson BL, Blumberg RS, Lencer WI (2002) Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196(3):303–310PubMedPubMedCentralCrossRefGoogle Scholar
  167. Straughn JM, Oliver PG, Zhou T, Wang W, Alvarez RD, Grizzle WE, Buchsbaum DJ (2006) Anti-tumor activity of TRA-8 anti-death receptor 5 (DR5) monoclonal antibody in combination with chemotherapy and radiation therapy in a cervical cancer model. Gynecol Oncol 101(1):46–54.  https://doi.org/10.1016/j.ygyno.2005.09.053 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Struemper H, Sale M, Patel BR, Ostergaard M, Osterborg A, Wierda WG, Hagenbeek A, Coiffier B, Jewell RC (2014) Population pharmacokinetics of ofatumumab in patients with chronic lymphocytic leukemia, follicular lymphoma, and rheumatoid arthritis. J Clin Pharmacol 54(7):818–827.  https://doi.org/10.1002/jcph.268 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Subramanian GM, Cronin PW, Poley G, Weinstein A, Stoughton SM, Zhong J, Ou Y, Zmuda JF, Osborn BL, Freimuth WW (2005) A phase 1 study of PAmAb, a fully human monoclonal antibody against Bacillus anthracis protective antigen, in healthy volunteers. Clin Infect Dis 41(1):12–20PubMedCrossRefPubMedCentralGoogle Scholar
  170. Sun YN, Lu JF, Joshi A, Compton P, Kwon P, Bruno RA (2005) Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin Pharmacol 45(4):468–476PubMedCrossRefPubMedCentralGoogle Scholar
  171. Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11(1-2):81–88PubMedCrossRefPubMedCentralGoogle Scholar
  172. Tang H, Mayersohn M (2005) Accuracy of allometrically predicted pharmacokinetic parameters in humans: role of species selection. Drug Metab Dispos 33(9):1288–1293PubMedCrossRefPubMedCentralGoogle Scholar
  173. Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93(9):2184–2204.  https://doi.org/10.1002/jps.20125 CrossRefGoogle Scholar
  174. Ternant D, Paintaud G (2005) Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol Ther 5(Suppl 1):S37–S47PubMedCrossRefPubMedCentralGoogle Scholar
  175. Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60(12):1421–1434.  https://doi.org/10.1016/j.addr.2008.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Tran JQ, Othman AA, Wolstencroft P, Elkins J (2016) Therapeutic protein-drug interaction assessment for daclizumab high-yield process in patients with multiple sclerosis using a cocktail approach. Br J Clin Pharmacol 82(1):160–167.  https://doi.org/10.1111/bcp.12936 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Trianni.com (2018) http://trianni.com/technology/mouse/. Accessed May 8, 2018
  178. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180PubMedCrossRefPubMedCentralGoogle Scholar
  179. Vaccaro C, Bawdon R, Wanjie S, Ober RJ, Ward ES (2006) Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci U S A 103(49):18709–18714PubMedPubMedCentralCrossRefGoogle Scholar
  180. Vaishnaw AK, TenHoor CN (2002) Pharmacokinetics, biologic activity, and tolerability of alefacept by intravenous and intramuscular administration. J Pharmacokinet Pharmacodyn 29(5-6):415–426PubMedCrossRefPubMedCentralGoogle Scholar
  181. Vasquez EM, Pollak R (1997) OKT3 therapy increases cyclosporine blood levels. Clin Transpl 11(1):38–41Google Scholar
  182. Vectibix (Panitumumab) Prescribing Information (2015) Thousand Oaks, CA, USAGoogle Scholar
  183. Vincenti F, Mendez R, Pescovitz M, Rajagopalan PR, Wilkinson AH, Butt K, Laskow D, Slakey DP, Lorber MI, Garg JP, Garovoy M (2007) A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant 7(7):1770–1777.  https://doi.org/10.1111/j.1600-6143.2007.01845.x CrossRefPubMedPubMedCentralGoogle Scholar
  184. Vugmeyster Y, Guay H, Szklut P, Qian MD, Jin M, Widom A, Spaulding V, Bennett F, Lowe L, Andreyeva T, Lowe D, Lane S, Thom G, Valge-Archer V, Gill D, Young D, Bloom L (2010) In vitro potency, pharmacokinetic profiles, and pharmacological activity of optimized anti-IL-21R antibodies in a mouse model of lupus. MAbs 2(3):335–346PubMedPubMedCentralCrossRefGoogle Scholar
  185. Vugmeyster Y, Szklut P, Wensel D, Ross J, Xu X, Awwad M, Gill D, Tchistiakov L, Warner G (2011) Complex pharmacokinetics of a humanized antibody against human amyloid beta peptide, anti-abeta Ab2, in nonclinical species. Pharm Res 28(7):1696–1706.  https://doi.org/10.1007/s11095-011-0405-x CrossRefPubMedPubMedCentralGoogle Scholar
  186. Wang Y (2016) Special considerations for modeling exposure response for biologics. In: Am Soc Clin Pharmacol and Therapeutics Ann MeetingGoogle Scholar
  187. Wang W, Prueksaritanont T (2010) Prediction of human clearance of therapeutic proteins: simple allometric scaling method revisited. Biopharm Drug Dispos 31(4):253–263.  https://doi.org/10.1002/bdd.708 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci 96(1):1–26PubMedCrossRefPubMedCentralGoogle Scholar
  189. Watanabe N, Kuriyama H, Sone H, Neda H, Yamauchi N, Maeda M, Niitsu Y (1988) Continuous internalization of tumor necrosis factor receptors in a human myosarcoma cell line. J Biol Chem 263(21):10262–10266PubMedPubMedCentralGoogle Scholar
  190. Weiner LM (2006) Fully human therapeutic monoclonal antibodies. J Immunother 29(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  191. Weiskopf K, Weissman IL (2015) Macrophages are critical effectors of antibody therapies for cancer. MAbs 7(2):303–310.  https://doi.org/10.1080/19420862.2015.1011450 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Weisman MH, Moreland LW, Furst DE, Weinblatt ME, Keystone EC, Paulus HE, Teoh LS, Velagapudi RB, Noertersheuser PA, Granneman GR, Fischkoff SA, Chartash EK (2003) Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther 25(6):1700–1721CrossRefGoogle Scholar
  193. Werther WA, Gonzalez TN, O’Connor SJ, McCabe S, Chan B, Hotaling T, Champe M, Fox JA, Jardieu PM, Berman PW, Presta LG (1996) Humanization of an anti-lymphocyte function-associated antigen (LFA)-1 monoclonal antibody and reengineering of the humanized antibody for binding to rhesus LFA-1. J Immunol 157(11):4986–4995PubMedPubMedCentralGoogle Scholar
  194. Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D, Bartlett NL, Parker JA, Dunn WL, Spies SM, Belanger R, Witzig TE, Leigh BR (2001) Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit Rev Oncol Hematol 39(1-2):181–194PubMedCrossRefPubMedCentralGoogle Scholar
  195. Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA (2007) Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 368(3):652–665.  https://doi.org/10.1016/j.jmb.2007.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Wurster U, Haas J (1994) Passage of intravenous immunoglobulin and interaction with the CNS. J Neurol Neurosurg Psychiatry 57(Suppl):21–25PubMedPubMedCentralCrossRefGoogle Scholar
  197. Xolair (Omalizumab) Prescribing Information (2006) South San Francisco, CA, USA & East Hanover, NJ, USAGoogle Scholar
  198. Yadav DB, Maloney JA, Wildsmith KR, Fuji RN, Meilandt WJ, Solanoy H, Lu Y, Peng K, Wilson B, Chan P, Gadkar K, Kosky A, Goo M, Daugherty A, Couch JA, Keene T, Hayes K, Nikolas LJ, Lane D, Switzer R, Adams E, Watts RJ, Scearce-Levie K, Prabhu S, Shafer L, Thakker DR, Hildebrand K, Atwal JK (2017) Widespread brain distribution and activity following i.c.v. infusion of anti-beta-secretase (BACE1) in nonhuman primates. Br J Pharmacol 174(22):4173–4185.  https://doi.org/10.1111/bph.14021 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Yang J, Zhao H, Garnett C, Rahman A, Gobburu JV, Pierce W, Schechter G, Summers J, Keegan P, Booth B, Wang Y (2013) The combination of exposure-response and case-control analyses in regulatory decision making. J Clin Pharmacol 53(2):160–166.  https://doi.org/10.1177/0091270012445206 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Yim DS, Zhou H, Buckwalter M, Nestorov I, Peck CC, Lee H (2005) Population pharmacokinetic analysis and simulation of the time-concentration profile of etanercept in pediatric patients with juvenile rheumatoid arthritis. J Clin Pharmacol 45(3):246–256.  https://doi.org/10.1177/0091270004271945 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Yip V, Palma E, Tesar DB, Mundo EE, Bumbaca D, Torres EK, Reyes NA, Shen BQ, Fielder PJ, Prabhu S, Khawli LA, Boswell CA (2014) Quantitative cumulative biodistribution of antibodies in mice: effect of modulating binding affinity to the neonatal Fc receptor. MAbs 6(3):689–696.  https://doi.org/10.4161/mabs.28254 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821.  https://doi.org/10.1056/NEJMoa1002965 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Yu YJ, Atwal JK, Zhang Y, Tong RK, Wildsmith KR, Tan C, Bien-Ly N, Hersom M, Maloney JA, Meilandt WJ, Bumbaca D, Gadkar K, Hoyte K, Luk W, Lu Y, Ernst JA, Scearce-Levie K, Couch JA, Dennis MS, Watts RJ (2014) Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci Transl Med 6(261):261ra154.  https://doi.org/10.1126/scitranslmed.3009835 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zenapax (Daclizumab) Prescribing Information (2005) Nutley, NJ, USAGoogle Scholar
  205. Zheng Y, Scheerens H, Davis JC Jr, Deng R, Fischer SK, Woods C, Fielder PJ, Stefanich EG (2011) Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther 89(2):283–290.  https://doi.org/10.1038/clpt.2010.311 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Zhou H (2005) Clinical pharmacokinetics of etanercept: a fully humanized soluble recombinant tumor necrosis factor receptor fusion protein. J Clin Pharmacol 45(5):490–497PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zhou H, Mayer PR, Wajdula J, Fatenejad S (2004) Unaltered etanercept pharmacokinetics with concurrent methotrexate in patients with rheumatoid arthritis. J Clin Pharmacol 44(11):1235–1243.  https://doi.org/10.1177/0091270004268049 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, Yeilding N, Davis HM, Zhou H (2009) Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 49(2):162–175.  https://doi.org/10.1177/0091270008329556 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Zhuang Y, de Vries DE, Xu Z, Marciniak SJ Jr, Chen D, Leon F, Davis HM, Zhou H (2015) Evaluation of disease-mediated therapeutic protein-drug interactions between an anti-interleukin-6 monoclonal antibody (sirukumab) and cytochrome P450 activities in a phase 1 study in patients with rheumatoid arthritis using a cocktail approach. J Clin Pharmacol 55(12):1386–1394.  https://doi.org/10.1002/jcph.561 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Zia-Amirhosseini P, Minthorn E, Benincosa LJ, Hart TK, Hottenstein CS, Tobia LA, Davis CB (1999) Pharmacokinetics and pharmacodynamics of SB-240563, a humanized monoclonal antibody directed to human interleukin-5, in monkeys. J Pharmacol Exp Ther 291(3):1060–1067Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rong Deng
    • 1
  • C. Andrew Boswell
    • 2
  • Wendy S. Putnam
    • 1
  • Meina T. Tang
    • 1
  • Amit Garg
    • 1
  • Chunze Li
    • 1
  • Shan Chung
    • 3
  • Sandhya Girish
    • 1
    Email author
  1. 1.Clinical Pharmacology, Genentech Inc.South San FranciscoUSA
  2. 2.Preclinical and Translational Pharmacokinetics, Genentech Inc.South San FranciscoUSA
  3. 3.Bioanalytical Sciences, Genentech Inc.South San FranciscoUSA

Personalised recommendations