Advertisement

Pharmacokinetics and Pharmacodynamics of Therapeutic Peptides and Proteins

  • Bernd MeibohmEmail author
Chapter

Abstract

The rational use of drugs and the design of effective dosage regimens are facilitated by the appreciation of the central paradigm of clinical pharmacology that there is a defined relationship between the administered dose of a drug, the resulting drug concentrations in various body fluids and tissues, and the intensity of pharmacologic effects caused by these concentrations. This dose-exposure-response relationship and thus the dose of a drug required to achieve a certain effect are determined by the drug’s pharmacokinetic and pharmacodynamic properties. The understanding of the dose-concentration-effect relationship is crucial to any drug—including peptides and proteins—as it lays the foundation for dosing regimen design and rational clinical application. General pharmacokinetic and pharmacodynamic principles are to a large extent equally applicable to protein and peptide drugs as they are to traditional small molecule-based therapeutics. Deviations from some of these principles and additional challenges with regard to the characterization of the pharmacokinetics and pharmacodynamics of therapeutic peptides and proteins, however, arise from some of their specific properties. This chapter will highlight some of the major pharmacokinetic properties and processes relevant for the majority of therapeutic peptides and proteins and will provide examples of well-characterized pharmacodynamic relationships for protein drugs.

Keywords

Pharmacokinetics Pharmacodynamics Therapeutic proteins Monoclonal antibodies Immunogenicity PKPD-modeling Pharmacometrics Drug development 

References

  1. Agoram B, Heatherington AC, Gastonguay MR (2006) Development and evaluation of a population pharmacokinetic-pharmacodynamic model of darbepoetin alfa in patients with nonmyeloid malignancies undergoing multicycle chemotherapy. AAPS J 8(3):E552–E563PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albitar M, Do KA, Johnson MM et al (2004) Free circulating soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its implication in therapy with anti-CD52 antibodies. Cancer 101(5):999–1008PubMedCrossRefGoogle Scholar
  3. Allon M, Kleinman K, Walczyk M et al (2002) Pharmacokinetics and pharmacodynamics of darbepoetin alfa and epoetin in patients undergoing dialysis. Clin Pharmacol Ther 72(5):546–555CrossRefGoogle Scholar
  4. Anderson PM, Sorenson MA (1994) Effects of route and formulation on clinical pharmacokinetics of interleukin-2. Clin Pharmacokinet 27(1):19–31PubMedCrossRefGoogle Scholar
  5. Bauer RJ, Gibbons JA, Bell DP, Luo ZP, Young JD (1994) Nonlinear pharmacokinetics of recombinant human macrophage colony-stimulating factor (M-CSF) in rats. J Pharmacol Exp Ther 268(1):152–158PubMedGoogle Scholar
  6. Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54(6):1517–1528PubMedGoogle Scholar
  7. Benincosa LJ, Chow FS, Tobia LP et al (2000) Pharmacokinetics and pharmacodynamics of a humanized monoclonal antibody to factor IX in cynomolgus monkeys. J Pharmacol Exp Ther 292(2):810–816PubMedGoogle Scholar
  8. Bennett HP, McMartin C (1978) Peptide hormones and their analogues: distribution, clearance from the circulation, and inactivation in vivo. Pharmacol Rev 30(3):247–292PubMedGoogle Scholar
  9. Berdeja J, Jagannath S, Zonder J, Badros A, Kaufman JL, Manges R, Gupta M, Tendolkar A, Lynch M, Bleickardt E, Paliwal P, Vij R (2016) Pharmacokinetics and safety of elotuzumab combined with lenalidomide and dexamethasone in patients with multiple myeloma and various levels of renal impairment: results of a phase Ib study. Clin Lymphoma Myeloma Leuk 16(3):129–138PubMedCrossRefGoogle Scholar
  10. Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10(2):201–227PubMedCrossRefGoogle Scholar
  11. Bressolle F, Audran M, Gareau R, Pham TN, Gomeni R (1997) Comparison of a direct and indirect population pharmacodynamic model: application to recombinant human erythropoietin in athletes. J Pharmacokinet Biopharm 25(3):263–275PubMedCrossRefGoogle Scholar
  12. Bruin G, Loesche C, Nyirady J, Sander O (2017) Population pharmacokinetic modeling of secukinumab in patients with moderate to severe psoriasis. J Clin Pharmacol 57(7):876–885PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bu G, Williams S, Strickland DK, Schwartz AL (1992) Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci U S A 89(16):7427–7431PubMedPubMedCentralCrossRefGoogle Scholar
  14. Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55(10):1261–1277PubMedCrossRefGoogle Scholar
  15. Carone FA, Peterson DR (1980) Hydrolysis and transport of small peptides by the proximal tubule. Am J Phys 238(3):F151–F158Google Scholar
  16. Carone FA, Peterson DR, Flouret G (1982) Renal tubular processing of small peptide hormones. J Lab Clin Med 100(1):1–14PubMedGoogle Scholar
  17. Chanson P, Timsit J, Harris AG (1993) Clinical pharmacokinetics of octreotide. Therapeutic applications in patients with pituitary tumours. Clin Pharmacokinet 25(5):375–391PubMedCrossRefGoogle Scholar
  18. Chiang J, Gloff CA, Yoshizawa CN, Williams GJ (1993) Pharmacokinetics of recombinant human interferon-beta ser in healthy volunteers and its effect on serum neopterin. Pharm Res 10(4):567–572PubMedCrossRefGoogle Scholar
  19. Chirmule N, Jawa V, Meibohm B (2012) Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J 14(2):296–302PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chow FS, Benincosa LJ, Sheth SB et al (2002) Pharmacokinetic and pharmacodynamic modeling of humanized anti-factor IX antibody (SB 249417) in humans. Clin Pharmacol Ther 71(4):235–245PubMedCrossRefGoogle Scholar
  21. Colburn W (1991) Peptide, peptoid, and protein pharmacokinetics/pharmacodynamics. In: Garzone P, Colburn W, Mokotoff M (eds) Petides, peptoids, and proteins, 3rd edn. Harvey Whitney Books, Cincinnati, pp 94–115Google Scholar
  22. Cumming DA (1991) Glycosylation of recombinant protein therapeutics: control and functional implications. Glycobiology 1(2):115–130PubMedCrossRefGoogle Scholar
  23. Daniel H, Herget M (1997) Cellular and molecular mechanisms of renal peptide transport. Am J Phys 273(1 Pt 2):F1–F8Google Scholar
  24. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmocokinet Biopharm 21(4):457–478CrossRefGoogle Scholar
  25. De la Peña A, Ma X, Reddy S, Ovalle F, Bergenstal RM, Jackson JA (2014) Application of PK/PD modeling and simulation to dosing regimen optimization of high-dose human regular U-500 insulin. J Diabetes Sci Technol 8(4):821–829PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1(5):435–461PubMedCrossRefGoogle Scholar
  27. Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281(4):F579–F596PubMedCrossRefGoogle Scholar
  28. Deng R, Iyer S, Theil FP et al (2011) Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs 3(1):61–66PubMedPubMedCentralCrossRefGoogle Scholar
  29. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16(2):176–185PubMedCrossRefGoogle Scholar
  30. Diao L, Meibohm B (2013) Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 52(10):855–868PubMedCrossRefGoogle Scholar
  31. Diao L, Meibohm B (2015) Tools for predicting the PK/PD of therapeutic proteins. Expert Opin Drug Metab Toxicol 11(7):1115–1125PubMedCrossRefGoogle Scholar
  32. Dirks NL, Meibohm B (2010) Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(10):633–659PubMedCrossRefGoogle Scholar
  33. Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu CP, Stouch BJ, Hurh E, Gibbs MA (2011) Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet 50(2):131–142PubMedCrossRefGoogle Scholar
  34. Dugger SA, Platt A, Goldstein DB (2018) Drug development in the era of precision medicine. Nat Rev Drug Discov 17(3):183–196PubMedCrossRefGoogle Scholar
  35. Edwards A, Daniels BS, Deen WM (1999) Ultrastructural model for size selectivity in glomerular filtration. Am J Phys 276(6 Pt 2):F892–F902Google Scholar
  36. Eigenmann MJ, Fronton L, Grimm HP, Otteneder MB, Krippendorff BF (2017) Quantification of IgG monoclonal antibody clearance in tissues. MAbs 9(6):1007–1015PubMedPubMedCentralCrossRefGoogle Scholar
  37. Eppler SM, Combs DL, Henry TD et al (2002) A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72(1):20–32PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fasano A (1998) Novel approaches for oral delivery of macromolecules. J Pharm Sci 87(11):1351–1356PubMedCrossRefGoogle Scholar
  39. Flessner MF, Lofthouse J, el Zakaria R (1997) In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am J Phys 273(6 Pt 2):H2783–H2793Google Scholar
  40. Glassman PM, Balthasar JP (2016) Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Pharmacodyn 43(4):427–446PubMedCrossRefGoogle Scholar
  41. Glund S, Gan G, Moschetti V, Reilly P, Honickel M, Grottke O, Van Ryn J (2018) The renal elimination pathways of the dabigatran reversal agent idarucizumab and its impact on dabigatran elimination. Clin Appl Thromb Hemost 24(5):724–733PubMedCrossRefGoogle Scholar
  42. Graham ML (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55(10):1293–1302PubMedCrossRefGoogle Scholar
  43. Handelsman DJ, Swerdloff RS (1986) Pharmacokinetics of gonadotropin-releasing hormone and its analogs. Endocr Rev 7(1):95–105PubMedCrossRefGoogle Scholar
  44. Hayashida K, Bartlett AH, Chen Y, Park PW (2010) Molecular and cellular mechanisms of ectodomain shedding. Anat Rec 293(6):925–937CrossRefGoogle Scholar
  45. Herbst RS, Langer CJ (2002) Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol 29(1 Suppl 4):27–36PubMedCrossRefGoogle Scholar
  46. Holford NH, Sheiner LB (1982) Kinetics of pharmacologic response. Pharmacol Ther 16(2):143–166PubMedCrossRefGoogle Scholar
  47. Inui K, Terada T, Masuda S, Saito H (2000) Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2. Nephrol Dial Transplant 15(Suppl 6):11–13PubMedCrossRefGoogle Scholar
  48. Ismair MG, Stieger B, Cattori V et al (2001) Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver. Gastroenterology 121(5):1185–1190PubMedCrossRefGoogle Scholar
  49. Jin F, Krzyzanski W (2004) Pharmacokinetic model of target-mediated disposition of thrombopoietin. AAPS PharmSci 6(1):E9PubMedCrossRefGoogle Scholar
  50. Johnson V, Maack T (1977) Renal extraction, filtration, absorption, and catabolism of growth hormone. Am J Phys 233(3):F185–F196Google Scholar
  51. Kaufman JS, Reda DJ, Fye CL et al (1998) Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on Erythropoietin in Hemodialysis Patients. N Engl J Med 339(9):578–583PubMedPubMedCentralCrossRefGoogle Scholar
  52. Khor SP, McCarthy K, DuPont M, Murray K, Timony G (2000) Pharmacokinetics, pharmacodynamics, allometry, and dose selection of rPSGL-Ig for phase I trial. J Pharmacol Exp Ther 293(2):618–624PubMedGoogle Scholar
  53. Kim J, Hayton WL, Robinson JM, Anderson CL (2007) Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol 122(2):146–155PubMedCrossRefGoogle Scholar
  54. Kingwell K (2016) Drug delivery: new targets for drug delivery across the BBB. Nat Rev Drug Discov 15(2):84–85PubMedCrossRefGoogle Scholar
  55. Kobayashi H, Shirakawa K, Kawamoto S et al (2002) Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd)(256). Cancer Res 62(3):860–866PubMedGoogle Scholar
  56. Kompella U, Lee V (1991) Pharmacokinetics of peptide and protein drugs. In: Lee V (ed) Peptide and protein drug delivery. Marcel Dekker, New York, pp 391–484Google Scholar
  57. Kontermann R (2012) Therapeutic proteins: strategies to modulate their plasma half-lives. Wiley, WeinheimCrossRefGoogle Scholar
  58. Krogsgaard Thomsen M, Friis C, Sehested Hansen B et al (1994) Studies on the renal kinetics of growth hormone (GH) and on the GH receptor and related effects in animals. J Pediatr Endocrinol 7(2):93–105PubMedCrossRefGoogle Scholar
  59. Kuwabara T, Uchimura T, Kobayashi H, Kobayashi S, Sugiyama Y (1995) Receptor-mediated clearance of G-CSF derivative nartograstim in bone marrow of rats. Am J Phys 269(1 Pt 1):E1–E9Google Scholar
  60. Lee HJ (2002) Protein drug oral delivery: the recent progress. Arch Pharm Res 25(5):572–584PubMedCrossRefGoogle Scholar
  61. Lee H, Kimko HC, Rogge M et al (2003) Population pharmacokinetic and pharmacodynamic modeling of etanercept using logistic regression analysis. Clin Pharmacol Ther 73(4):348–365PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lesko LJ (2007) Paving the critical path: how can clinical pharmacology help achieve the vision? Clin Pharmacol Ther 81(2):170–177PubMedCrossRefGoogle Scholar
  63. Lesko LJ, Rowland M, Peck CC, Blaschke TF (2000) Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans. J Clin Pharmacol 40(8):803–814PubMedCrossRefGoogle Scholar
  64. Levy G (1986) Kinetics of drug action: an overview. J Allergy Clin Immunol 78(4 Pt 2):754–761PubMedCrossRefGoogle Scholar
  65. Levy G (1994) Mechanism-based pharmacodynamic modeling. Clin Pharmacol Ther 56(4):356–358PubMedCrossRefGoogle Scholar
  66. Limothai W, Meibohm B (2011) Effect of dose on the apparent bioavailability of therapeutic proteins that undergo target-mediated drug disposition. AAPS J 13(S2)Google Scholar
  67. Maack T, Park C, Camargo M (1985) Renal filtration, transport and metabolism of proteins. In: Seldin D, Giebisch G (eds) The kidney. Raven Press, New York, pp 1773–1803Google Scholar
  68. Mach H, Gregory SM, Mackiewicz A et al (2011) Electrostatic interactions of monoclonal antibodies with subcutaneous tissue. Ther Deliv 2(6):727–736PubMedCrossRefGoogle Scholar
  69. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72(1):1–10PubMedCrossRefGoogle Scholar
  70. Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31(5):510–518PubMedCrossRefGoogle Scholar
  71. Mahato RI, Narang AS, Thoma L, Miller DD (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 20(2-3):153–214PubMedCrossRefGoogle Scholar
  72. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533PubMedCrossRefGoogle Scholar
  73. McMartin C (1992) Pharmacokinetics of peptides and proteins: opportunities and challenges. Adv Drug Res 22:39–106CrossRefGoogle Scholar
  74. Meibohm B (2004) Pharmacokinetics of protein- and nucleotide-based drugs. In: Mahato RI (ed) Biomaterials for delivery and targeting of proteins and nucleic acids. CRC Press, Boca Raton, pp 275–294Google Scholar
  75. Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 35(10):401–413PubMedGoogle Scholar
  76. Meibohm B, Derendorf H (2002) Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 91(1):18–31PubMedCrossRefGoogle Scholar
  77. Meibohm B, Derendorf H (2004) Pharmacokinetics and pharmacodynamics of biotech drugs. In: Kayser O, Muller R (eds) Pharmaceutical biotechnology: drug discovery and clinical applications. Wiley, Weinheim, pp 147–172Google Scholar
  78. Meibohm B, Zhou H (2012) Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol 52(1 Suppl):54S–62SPubMedCrossRefGoogle Scholar
  79. Meijer D, Ziegler K (1993) Biological barriers to protein delivery. Plenum Press, New YorkGoogle Scholar
  80. Mohler M, Cook J, Lewis D et al (1993) Altered pharmacokinetics of recombinant human deoxyribonuclease in rats due to the presence of a binding protein. Drug Metab Dispos 21(1):71–75PubMedGoogle Scholar
  81. Molineux G (2003) Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy 23(8 Pt 2):3S–8SPubMedCrossRefGoogle Scholar
  82. Montero-Julian FA, Klein B, Gautherot E, Brailly H (1995) Pharmacokinetic study of anti-interleukin-6 (IL-6) therapy with monoclonal antibodies: enhancement of IL-6 clearance by cocktails of anti-IL-6 antibodies. Blood 85(4):917–924PubMedGoogle Scholar
  83. Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD (1991) Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res 8(11):1351–1359PubMedCrossRefGoogle Scholar
  84. Mould DR, Davis CB, Minthorn EA et al (1999) A population pharmacokinetic-pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther 66(3):246–257PubMedCrossRefPubMedCentralGoogle Scholar
  85. Mould DR, Meibohm B (2016) Drug development of therapeutic monoclonal antibodies. BioDrugs 30(4):275–293PubMedCrossRefGoogle Scholar
  86. Nagaraja NV, Pechstein B, Erb K et al (2000) Pharmacokinetic and pharmacodynamic modeling of cetrorelix, an LH-RH antagonist, after subcutaneous administration in healthy premenopausal women. Clin Pharmacol Ther 68(6):617–625PubMedCrossRefGoogle Scholar
  87. Nagaraja NV, Pechstein B, Erb K et al (2003) Pharmacokinetic/pharmacodynamic modeling of luteinizing hormone (LH) suppression and LH surge delay by cetrorelix after single and multiple doses in healthy premenopausal women. J Clin Pharmacol 43(3):243–251PubMedCrossRefGoogle Scholar
  88. Nielsen S, Nielsen JT, Christensen EI (1987) Luminal and basolateral uptake of insulin in isolated, perfused, proximal tubules. Am J Phys 253(5 Pt 2):F857–F867Google Scholar
  89. Pauletti GM, Gangwar S, Siahaan TJ, Jeffrey A, Borchardt RT (1997) Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 27(2-3):235–256PubMedCrossRefGoogle Scholar
  90. Pechstein B, Nagaraja NV, Hermann R et al (2000) Pharmacokinetic-pharmacodynamic modeling of testosterone and luteinizing hormone suppression by cetrorelix in healthy volunteers. J Clin Pharmacol 40(3):266–274PubMedCrossRefGoogle Scholar
  91. Peck CC, Barr WH, Benet LZ et al (1994) Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. J Clin Pharmacol 34(2):111–119PubMedCrossRefGoogle Scholar
  92. Perez-Ruixo JJ, Kimko HC, Chow AT et al (2005) Population cell life span models for effects of drugs following indirect mechanisms of action. J Pharmacokinet Pharmacodyn 32(5-6):767–793PubMedCrossRefGoogle Scholar
  93. Periti P, Mazzei T, Mini E (2002) Clinical pharmacokinetics of depot leuprorelin. Clin Pharmacokinet 41(7):485–504PubMedCrossRefGoogle Scholar
  94. Perrier D, Mayersohn M (1982) Noncompartmental determination of the steady-state volume of distribution for any mode of administration. J Pharm Sci 71(3):372–373PubMedCrossRefGoogle Scholar
  95. Piscitelli SC, Reiss WG, Figg WD, Petros WP (1997) Pharmacokinetic studies with recombinant cytokines. Scientific issues and practical considerations. Clin Pharmacokinet 32(5):368–381PubMedCrossRefGoogle Scholar
  96. Porter CJ, Charman SA (2000) Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 89(3):297–310PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rabkin R, Ryan MP, Duckworth WC (1984) The renal metabolism of insulin. Diabetologia 27(3):351–357PubMedCrossRefGoogle Scholar
  98. Racine-Poon A, Botta L, Chang TW et al (1997) Efficacy, pharmacodynamics, and pharmacokinetics of CGP 51901, an anti-immunoglobulin E chimeric monoclonal antibody, in patients with seasonal allergic rhinitis. Clin Pharmacol Ther 62(6):675–690PubMedCrossRefGoogle Scholar
  99. Radwanski E, Chakraborty A, Van Wart S et al (1998) Pharmacokinetics and leukocyte responses of recombinant human interleukin-10. Pharm Res 15(12):1895–1901PubMedCrossRefGoogle Scholar
  100. Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko WJ (2004) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol 44(9):991–1002PubMedPubMedCentralCrossRefGoogle Scholar
  101. Reddy ST, Berk DA, Jain RK, Swartz MA (2006) A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol 101(4):1162–1169PubMedCrossRefGoogle Scholar
  102. Richter WF, Bhansali SG, Morris ME (2012) Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J 14(3):559–570PubMedPubMedCentralCrossRefGoogle Scholar
  103. Richter WF, Gallati H, Schiller CD (1999) Animal pharmacokinetics of the tumor necrosis factor receptor-immunoglobulin fusion protein lenercept and their extrapolation to humans. Drug Metab Dispos 27(1):21–25PubMedGoogle Scholar
  104. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725PubMedCrossRefGoogle Scholar
  105. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 46(7):747–757PubMedCrossRefGoogle Scholar
  106. Ryman JT, Meibohm B (2017) Pharmacokinetics of monoclonal antibodies. CPT: Pharmacometrics Syst Pharmacol 6(9):576–588Google Scholar
  107. Schomburg A, Kirchner H, Atzpodien J (1993) Renal, metabolic, and hemodynamic side-effects of interleukin-2 and/or interferon alpha: evidence of a risk/benefit advantage of subcutaneous therapy. J Cancer Res Clin Oncol 119(12):745–755PubMedCrossRefGoogle Scholar
  108. Sharma A, Jusko W (1998) Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol 45:229–239PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25(3):358–371PubMedCrossRefGoogle Scholar
  110. Sheiner LB, Steimer JL (2000) Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol 40:67–95PubMedCrossRefGoogle Scholar
  111. Shen WC (2003) Oral peptide and protein delivery: unfulfilled promises? Drug Discov Today 8(14):607–608PubMedCrossRefGoogle Scholar
  112. Smedsrod B, Einarsson M (1990) Clearance of tissue plasminogen activator by mannose and galactose receptors in the liver. Thromb Haemost 63(1):60–66PubMedCrossRefGoogle Scholar
  113. Straughn AB (1982) Model-independent steady-state volume of distribution. J Pharm Sci 71(5):597–598PubMedCrossRefGoogle Scholar
  114. Straughn AB (2006) Limitations of noncompartmental pharmacokinetic analysis of biotech drugs. In: Meibohm B (ed) Pharmacokinetics and pharmacodynamics of biotech drugs. Wiley, Weinheim, pp 181–188CrossRefGoogle Scholar
  115. Strickland DK, Kounnas MZ, Argraves WS (1995) LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J 9(10):890–898PubMedCrossRefGoogle Scholar
  116. Sun YN, Jusko WJ (1999) Role of baseline parameters in determining indirect pharmacodynamic responses. J Pharm Sci 88(10):987–990PubMedCrossRefGoogle Scholar
  117. Sun YN, Lee HJ, Almon RR, Jusko WJ (1999) A pharmacokinetic/pharmacodynamic model for recombinant human growth hormone effects on induction of insulin-like growth factor I in monkeys. J Pharmacol Exp Ther 289(3):1523–1532PubMedGoogle Scholar
  118. Supersaxo A, Hein W, Gallati H, Steffen H (1988) Recombinant human interferon alpha-2a: delivery to lymphoid tissue by selected modes of application. Pharm Res 5(8):472–476PubMedCrossRefGoogle Scholar
  119. Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7(2):167–169PubMedPubMedCentralCrossRefGoogle Scholar
  120. Suryawanshi S, Zhang L, Pfister M, Meibohm B (2010) The current role of model-based drug development. Expert Opin Drug Discovery 5(4):311–321CrossRefGoogle Scholar
  121. Tabrizi M, Roskos LK (2006) Exposure-response relationships for therapeutic biologics. In: Meibohm B (ed) Pharmacokinetics and pharmacodynamics of biotech drugs. Wiley, Weinheim, pp 295–330CrossRefGoogle Scholar
  122. Takagi A, Masuda H, Takakura Y, Hashida M (1995) Disposition characteristics of recombinant human interleukin-11 after a bolus intravenous administration in mice. J Pharmacol Exp Ther 275(2):537–543PubMedGoogle Scholar
  123. Taki Y, Sakane T, Nadai T et al (1998) First-pass metabolism of peptide drugs in rat perfused liver. J Pharm Pharmacol 50(9):1013–1018PubMedCrossRefGoogle Scholar
  124. Tang L, Meibohm B (2006) Pharmacokinetics of peptides and proteins. In: Meibohm B (ed) Pharmacokinetics and pharmacodynamics of biotech drugs. Wiley, Weinheim, pp 17–44Google Scholar
  125. Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93(9):2184–2204PubMedCrossRefGoogle Scholar
  126. Tanswell P, Modi N, Combs D, Danays T (2002) Pharmacokinetics and pharmacodynamics of tenecteplase in fibrinolytic therapy of acute myocardial infarction. Clin Pharmacokinet 41(15):1229–1245PubMedCrossRefGoogle Scholar
  127. Tokuda Y, Watanabe T, Omuro Y et al (1999) Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer 81(8):1419–1425PubMedPubMedCentralCrossRefGoogle Scholar
  128. Toon S (1996) The relevance of pharmacokinetics in the development of biotechnology products. Eur J Drug Metab Pharmacokinet 21(2):93–103PubMedCrossRefGoogle Scholar
  129. Veng-Pedersen P, Gillespie W (1984) Mean residence time in peripheral tissue: a linear disposition parameter useful for evaluating a drug’s tissue distribution. J Pharmacokinet Biopharm 12(5):535–543PubMedCrossRefGoogle Scholar
  130. Veronese FM, Caliceti P (2006) Custom-tailored pharmacokinetics and pharmacodynamics via chemical modifications of biotech drugs. In: Meibohm B (ed) Pharmacokinetics and pharmacodynamics of boptech drugs. Wiley, Weinheim, pp 271–294CrossRefGoogle Scholar
  131. Walsh S, Shah A, Mond J (2003) Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother 47(2):554–558PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84(5):548–558PubMedCrossRefGoogle Scholar
  133. Wills RJ, Ferraiolo BL (1992) The role of pharmacokinetics in the development of biotechnologically derived agents. Clin Pharmacokinet 23(6):406–414PubMedCrossRefGoogle Scholar
  134. Yang BB (2006) Integration of pharmacokinetics and pharmacodynamics into the drug development of pegfilgrastim, a pegylated protein. In: Meibohm B (ed) Pharmacokinetics and pharmacodynamics of biotech drugs. Wiley, Weinheim, pp 373–394CrossRefGoogle Scholar
  135. Zamboni WC (2003) Pharmacokinetics of pegfilgrastim. Pharmacotherapy 23(8 Pt 2):9S–14SPubMedCrossRefGoogle Scholar
  136. Zhang Y, Meibohm B (2012) Pharmacokinetics and pharmacodynamics and therapeutic peptides and proteins. In: Kayzer O, Warzecha H (eds) Pharmaceutical biotechnology: drug discovery and clinical applications. Wiley, Weinheim, pp 337–368CrossRefGoogle Scholar
  137. Zhang L, Pfister M, Meibohm B (2008) Concepts and challenges in quantitative pharmacology and model-based drug development. AAPS J 10(4):552–559PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhao L, Ji P, Li Z, Roy P, Sahajwalla CG (2013) The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol 53(3):314–325PubMedCrossRefGoogle Scholar
  139. Zia-Amirhosseini P, Minthorn E, Benincosa LJ et al (1999) Pharmacokinetics and pharmacodynamics of SB-240563, a humanized monoclonal antibody directed to human interleukin-5, in monkeys. J Pharmacol Exp Ther 291(3):1060–1067PubMedGoogle Scholar
  140. Ziegler K, Polzin G, Frimmer M (1988) Hepatocellular uptake of cyclosporin A by simple diffusion. Biochim Biophys Acta 938(1):44–50PubMedCrossRefGoogle Scholar
  141. Zito SW (1997) Pharmaceutical biotechnology: a programmed text. Technomic, LancasterGoogle Scholar

Further Reading

    General Pharmacokinetics and Pharmacodynamics

    1. Atkinson A, Abernethy D, Daniels C, Dedrick R, Markey S (2006) Principles of clinical pharmacology. Academic, San DiegoGoogle Scholar
    2. Bonate PL (2011) Pharmacokinetic-pharmacodynamic modeling and simulation. Springer, New YorkCrossRefGoogle Scholar
    3. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16(2):176–185PubMedCrossRefGoogle Scholar
    4. Gabrielsson J, Hjorth S (2012) Quantitative pharmacology. Swedish Academy of Pharmaceutical Sciences, StockholmGoogle Scholar
    5. Gibaldi M, Perrier D (1982) Pharmacokinetics. Marcel Dekker, New YorkGoogle Scholar
    6. Holford NH, Sheiner LB (1982) Kinetics of pharmacologic response. Pharmacol Ther 16(2):143–166PubMedCrossRefGoogle Scholar
    7. Rowland M, Tozer TN (2011) Clinical pharmacokinetics and pharmacodynamics: concepts and applications. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar

    Pharmacokinetics and Pharmacodynamics of Peptides and Proteins

    1. Diao L, Meibohm B (2013) Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 52(10):855–868PubMedCrossRefGoogle Scholar
    2. Diao L, Meibohm B (2015) Tools for predicting the PK/PD of therapeutic proteins. Expert Opin Drug Metab Toxicol 11(7):1115–1125PubMedCrossRefGoogle Scholar
    3. Kontermann R (2012) Therapeutic proteins: strategies to modulate their plasma half-lives. Wiley, WeinheimCrossRefGoogle Scholar
    4. Meibohm B (2006) Pharmacokinetics and pharmacodynamics of biotech drugs. Wiley, WeinheimCrossRefGoogle Scholar
    5. Mould DR, Meibohm B (2016) Drug development of therapeutic monoclonal antibodies. BioDrugs 30(4):275–293PubMedCrossRefGoogle Scholar
    6. Ryman JT, Meibohm B (2017) Pharmacokinetics of monoclonal antibodies. CPT: Pharmacometrics Syst Pharmacol 6(9):576–588Google Scholar
    7. Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93(9):2184–2204PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity of Tennessee Health Science Center, College of PharmacyMemphisUSA

Personalised recommendations