Advertisement

Antibody-Based Biotherapeutics in Inflammatory Diseases

  • Honghui ZhouEmail author
  • Yan Xu
  • Amarnath Sharma
Chapter

Abstract

Inflammatory diseases encompass a broad and diverse spectrum of serious chronic disorders, many of which have significant need for safe and effective pharmacotherapies. The conventional drugs used to treat immune-mediated inflammatory diseases include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, sulfasalazine, 5-aminosalicylates, methotrexate, azathioprine, and 6-mercaptopurine which have exhibited limited efficacy with significant side effects. The initial rationale and promise of antibody-based biotherapeutics, such as monoclonal antibodies (mAbs), was focused on oncology and organ transplantation. Over the last two decades, there has been significant success in developing a number of antibody-based biotherapeutics as a very effective and relatively safe treatment for several inflammatory diseases, and this area of research and development is rapidly expanding. Five of the top-selling mAbs are for the treatment of chronic inflammatory conditions.

Keywords

Inflammation Anti-tumor necrosis factor alpha Rheumatoid arthritis Psoriasis Inflammatory bowel disease Lupus erythematosus 

References

  1. Abdallah H, Hsu JC, Lu P et al (2017) Pharmacokinetic and pharmacodynamic analysis of subcutaneous tocilizumab in patients with rheumatoid arthritis from 2 randomized, controlled trials: SUMMACTA and BREVACTA. J Clin Pharmacol 57:459–468PubMedCrossRefPubMedCentralGoogle Scholar
  2. Actemra (tocilizumab) (2017) US prescribing information. Genentech Inc., South San FranciscoGoogle Scholar
  3. Adedokun OJ, Xu Z, Padgett L et al (2013) Pharmacokinetics of infliximab in children with moderate-to-severe ulcerative colitis: results from a randomized, multicenter, open-label, phase 3 study. Inflamm Bowel Dis 19:2753–2762PubMedCrossRefPubMedCentralGoogle Scholar
  4. Adedokun OJ, Sandborn WJ, Feagan BG et al (2014) Association between serum concentration of infliximab and efficacy in adult patients with ulcerative colitis. Gastroenterology 147:1296–1307.e5PubMedCrossRefPubMedCentralGoogle Scholar
  5. Adedokun OJ, Xu Z, Marano CW et al (2017) Pharmacokinetics and exposure-response relationship of golimumab in patients with moderately-to-severely active ulcerative colitis: results from phase 2/3 PURSUIT induction and maintenance studies. J Crohns Colitis 11:35–46PubMedCrossRefPubMedCentralGoogle Scholar
  6. Arcalyst (rilonacept) (2016) US prescribing information. Regeneron Pharmaceuticals Inc., TarrytownGoogle Scholar
  7. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–1657PubMedCrossRefPubMedCentralGoogle Scholar
  8. Benlysta (Belimumab) (2017) US prescribing information. Human Genome Sciences, Inc., (a subsidiary of GlaxoSmithKline), RockvilleGoogle Scholar
  9. Blauvelt A, Reich K, Tsai TF et al (2017) Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: Results from the CLEAR study. J Am Acad Dermatol 76:60–69. e9PubMedCrossRefPubMedCentralGoogle Scholar
  10. Blok JL, Li K, Brodmerkel C, Horvátovich P, Jonkman MF, Horváth B (2016) Ustekinumab in hidradenitis suppurativa: clinical results and a search for potential biomarkers in serum. Br J Dermatol 174:839–846CrossRefGoogle Scholar
  11. Boguniewicz M (2017) Biologic therapy for atopic dermatitis: moving beyond the practice parameter and guidelines. J Allergy Clin Immunol Pract 5:1477–1487PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bongartz T, Sutton AJ, Sweeting MJ et al (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ (2016) Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 3:16011PubMedPubMedCentralCrossRefGoogle Scholar
  14. Borrás-Blasco J, Casterá DE, Cortes X, Abad FJ, Rosique-Robles JD, Mallench LG (2015) Effectiveness of infliximab, adalimumab and golimumab for non-infectious refractory uveitis in adults. Int J Clin Pharmacol Ther 53:377–390PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brown SL, Greene MH, Gershon SK et al (2002) Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum 46:3151–3158PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chaudhary R, Butler M, Playford RJ, Ghosh S (2006) Anti-TNF antibody induced stimulated T lymphocyte apoptosis depends on the concentration of the antibody and etanercept induces apoptosis at rates equivalent to infliximab and adalimumab at 10 micrograms per ml concentration. Gastroenterology 130(Suppl 2). [Abstract A696]Google Scholar
  17. Choi SL, Jackson K, Chigutsa E et al (2016) A longitudinal PKPD model describing the static Physician Global Assessment (sPGA) response to ixekizumab in patients with moderate to severe plaque psoriasis. J Pharmacokinet Pharmacodyn 43:S37. [Abstract M-57]Google Scholar
  18. Christophers E (2001) Psoriasis—epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cimzia (certolizumab pegol) (2016) US prescribing information. UCB Inc, SmyrnaGoogle Scholar
  20. Cinqair (reslizumab) (2016) US prescribing information. Teva Pharmaceutical Industries Ltd., FrazerGoogle Scholar
  21. Cooke A, Bulkhi A, Casale T (2015) Role of biologics in intractable urticaria. Biologics 9:25–33PubMedPubMedCentralGoogle Scholar
  22. Cosentyx (secukinumab) (2017) US prescribing information. Novartis Pharmaceuticals Corporation, East HanoverGoogle Scholar
  23. Davis JC, Mease PJ (2008) Insights into the pathology and treatment of spondyloarthritis: from the bench to the clinic. Semin Arthritis Rheum 38:83–100PubMedCrossRefPubMedCentralGoogle Scholar
  24. D’Haens G, Baert F, van Assche G et al (2008) Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet 371:660–667PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dupixent (dupilumab) (2017) US prescribing information. Sanofi-aventis U.S. LLC/ and Regeneron Pharmaceuticals, Inc., BridgewaterGoogle Scholar
  26. Ehrlich P (1891) Experimentelle untersuchungen über immunität. I. Ueber Ricin. Dtsch Med Wochenschr 17:976–979CrossRefGoogle Scholar
  27. Ellerin T, Rubin RH, Weinblatt ME (2003) Infections and anti-tumor necrosis factor alpha therapy. Arthritis Rheum 48:3013–3022PubMedCrossRefPubMedCentralGoogle Scholar
  28. Enbrel (etanercept) (2016) US prescribing information. Immunex Corporation, Thousand OaksGoogle Scholar
  29. Entyvio (vedolizumab) (2014) US prescribing information. Takeda Pharmaceuticals, DeerfieldGoogle Scholar
  30. European Medicines Agency (2009) EMEA/541561/2009- Assessment report (Arcalyst®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/001047/WC500026509.pdf. Accessed 06 Feb 2018
  31. European Medicines Agency (2013a) EMA/56352/2013- Assessment report (Humira®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000481/WC500138422.pdf. Accessed 06 Feb 2018
  32. European Medicines Agency (2013b) EMA/CHMP/431551/2013- Assessment report (Stelara®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000958/WC500150607.pdf. Accessed 06 Feb 2018
  33. European Medicines Agency (2015a) EMA/CHMP/177541/2015- Extension of indication variation assessment report (Humira®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000481/WC500186769.pdf. Accessed 06 Feb 2018
  34. European Medicines Agency (2015b) EMA/CHMP/364731/2015- Assessment report (Humira®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000481/WC500195564.pdf. Accessed 06 Feb 2018
  35. European Medicines Agency (2015c) EMA/CHMP/665405/2015 - Assessment report (Cosentyx®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/003729/WC500199574.pdf. Accessed 06 Feb 2018
  36. European Medicines Agency (2015d) EMA/CHMP/665427/2015- Assessment report (Cosentyx®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/003729/WC500199573.pdf. Accessed 06 Feb 2018
  37. European Medicines Agency (2016a) EMA/501143/2016- Extension of indication variation assessment report (Humira®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000481/WC500211228.pdf. Accessed 06 Feb 2018
  38. European Medicines Agency (2016b) EMA/CHMP/404217/2016- Assessment report (Simponi®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000992/WC500211888.pdf. Accessed 06 Feb 2018
  39. European Medicines Agency (2017a) EMA/455579/2017- Assessment report (Orencia®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000701/WC500233148.pdf. Accessed 06 Feb 2018
  40. European Medicines Agency (2017b) EMA/512262/2017- Assessment report (Dupixent®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004390/WC500236509.pdf. Accessed 06 Feb 2018
  41. European Medicines Agency (2017c) EMA/790835/2017- Assessment report (Ocrevusi®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004043/WC500241126.pdf. Accessed 06 Feb 2018
  42. European Medicines Agency (2017d) EMA/CHMP/829007/2017- Assessment report (Humira®). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000481/WC500240431.pdf. Accessed 06 Feb 2018
  43. Fasanmade A, Oison A, Bag W, Pendley C, Davis H, Mayer L (2002) Relationship between Infliximab Pharmacokinetics and Improvement in Crohn’s disease. Gastroenterology 122(Suppl 4):A617–A618. [Abstract W1364]Google Scholar
  44. Fasanmade AA, Marsters P, Munsanje E, Graham MA, Davis HM, Van Deventer S (2003) Infliximab pharmacokinetics and improvement in fistulizing Crohn’s disease. Gastroenterology 124(Suppl 1):A61. [Abstract 470]CrossRefGoogle Scholar
  45. Fasenra (benralizumab) (2017) US prescribing information. AstraZeneca Pharmaceuticals LP, WilmingtonGoogle Scholar
  46. Feldman SR, Krueger GG (2005) Psoriasis assessment tools in clinical trials. Ann Rheum Dis 64(Suppl 2):ii65–ii68PubMedPubMedCentralGoogle Scholar
  47. Gibiansky L, Gibiansky E, Frey N et al (2017) Population pharmacokinetic and exposure-efficacy/safety analyses for selection of optimal dose regimen of tocilizumab in patients with giant cell arteritis (GCA). J Pharmacokinet Pharmacodyn 44:S131. [Abstract W-076]CrossRefGoogle Scholar
  48. Golay J, Semenzato G, Rambaldi A et al (2013) Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. MAbs 5:826–837PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gold R, Jawad A, Miller DH et al (2007) Expert opinion: guidelines for the use of natalizumab in multiple sclerosis patients previously treated with immunomodulating therapies. J Neuroimmunol 187:156–158PubMedCrossRefGoogle Scholar
  50. Gomez-Garcia F, Epstein D, Isla-Tejera B et al (2017) Short-term efficacy and safety of new biological agents targeting the interleukin-23-T helper 17 pathway for moderate-to-severe plaque psoriasis: a systematic review and network meta-analysis. Br J Dermatol 176:594–603PubMedCrossRefGoogle Scholar
  51. Greco A, Rizzo MI, De Virgilio A et al (2015) Churg-Strauss syndrome. Autoimmun Rev 14:341–348PubMedCrossRefGoogle Scholar
  52. Griffiths CE, Barker JN (2007) Pathogenesis and clinical features of psoriasis. Lancet 370:263–271PubMedCrossRefGoogle Scholar
  53. Griffiths CE, Strober BE, van de Kerkhof P et al (2010) Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med 362:118–128PubMedCrossRefGoogle Scholar
  54. Gura T (2002) Therapeutic antibodies: magic bullets hit the target. Nature 417:584–586PubMedCrossRefGoogle Scholar
  55. Hasegawa M, Imai Y, Hiraoka M, Ito K, Roy A (2011) Model-based determination of abatacept exposure in support of the recommended dose for Japanese rheumatoid arthritis patients. J Pharmacokinet Pharmacodyn 38:803–832PubMedCrossRefGoogle Scholar
  56. Hawkins PN, Lachmann HJ (2003) Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N Engl J Med 348:2583–2584PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hochhaus G, Brookman L, Fox H et al (2003) Pharmacodynamics of omalizumab: implications for optimised dosing strategies and clinical efficacy in the treatment of allergic asthma. Curr Med Res Opin 19:491–498PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hoentjen F, van Bodegraven AA (2009) Safety of anti-tumor necrosis factor therapy in inflammatory bowel disease. World J Gastroenterol 15:2067–2073PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hoseyni HG, Xu Y, Zhou H (2018) Therapeutic drug monitoring (TDM) of biologics for inflammatory bowel disease – an answer to optimized treatment? J Clin Pharmacol 58(7):864–876PubMedCrossRefGoogle Scholar
  60. Hsu LF, Huang JD (2014) Evaluation of etanercept dose reduction in patients with rheumatoid arthritis using pharmacokinetic/pharmacodynamic modeling and simulation. Int J Clin Pharmacol Ther 52:776–786PubMedCrossRefGoogle Scholar
  61. Hu C, Xu Z, Zhang Y, Rahman MU, Davis HM, Zhou H (2011) Population approach for exposure-response modeling of golimumab in patients with rheumatoid arthritis. J Clin Pharmacol 51:639–648PubMedCrossRefGoogle Scholar
  62. Hu C, Adedokun OJ, Chen Y et al (2017a) Challenges in longitudinal exposure-response modeling of data from complex study designs: a case study of modeling CDAI score for ustekinumab in patients with Crohn’s disease. J Pharmacokinet Pharmacodyn 44:425–436PubMedCrossRefGoogle Scholar
  63. Hu C, Randazzo B, Sharma A, Zhou H (2017b) Improvement in latent variable indirect response modeling of multiple categorical clinical endpoints: application to modeling of guselkumab treatment effects in psoriatic patients. J Pharmacokinet Pharmacodyn 44:437–448PubMedCrossRefGoogle Scholar
  64. Humira (adalimumab) (2017) US prescribing information. AbbVie Inc, North ChicagoGoogle Scholar
  65. Hutmacher MM, Nestorov I, Ludden T, Zitnik R, Banfield C (2007) Modeling the exposure-response relationship of etanercept in the treatment of patients with chronic moderate to severe plaque psoriasis. J Clin Pharmacol 47:238–248PubMedCrossRefGoogle Scholar
  66. Ilaris (canakinumab) (2016) US prescribing information. Novartis Pharmaceuticals Corporation, East HanoverGoogle Scholar
  67. Jabbar-Lopez ZK, Yiu ZZN, Ward V et al (2017) Quantitative evaluation of biologic therapy options for psoriasis: a systematic review and network meta-analysis. J Investig Dermatol 137:1646–1654PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kevzara (sarilumab) (2017) US prescribing information. Sanofi-aventis U.S. LLC/Regeneron Pharmaceuticals, Inc., BridgewaterGoogle Scholar
  69. Khattri S, Brunner PM, Garcet S et al (2017) Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis. Exp Dermatol 26:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kraft M, Worm M (2017) Dupilumab in the treatment of moderate-to-severe atopic dermatitis. Expert Rev Clin Immunol 13:301–310PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kubota T, Koike R (2010) Cryopyrin-associated periodic syndromes: background and therapeutics. Mod Rheumatol 20:213–221PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lachmann HJ, Lowe P, Felix SD et al (2009) In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med 206:1029–1036PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lacroix BD, Karlsson MO, Friberg LE (2014) Simultaneous exposure-response modeling of ACR20, ACR50, and ACR70 improvement scores in rheumatoid arthritis patients treated with certolizumab pegol. CPT Pharmacometrics Syst Pharmacol. 3:e143PubMedPubMedCentralCrossRefGoogle Scholar
  74. Laffaldano P, Lucchese G, Trojano M (2011) Treating multiple sclerosis with natalizumab. Expert Rev Neurother 11:1683–1692CrossRefGoogle Scholar
  75. Langford CA, Cuthbertson D, Ytterberg SR et al (2017) A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of Giant cell arteritis. Arthritis Rheumatol 69:837–845PubMedPubMedCentralCrossRefGoogle Scholar
  76. Langley RG (2012) Effective and sustainable biologic treatment of psoriasis: what can we learn from new clinical data? J Eur Acad Dermatol Venereol 26(Suppl 2):21–29PubMedCrossRefPubMedCentralGoogle Scholar
  77. Langley RG, Elewski BE, Lebwohl M et al (2014) Secukinumab in plaque psoriasis--results of two phase 3 trials. N Engl J Med 371:326–338PubMedCrossRefPubMedCentralGoogle Scholar
  78. Lee H, Kimko HC, Rogge M, Wang D, Nestorov I, Peck CC (2003) Population pharmacokinetic and pharmacodynamic modeling of etanercept using logistic regression analysis. Clin Pharmacol Ther 73:348–365PubMedPubMedCentralCrossRefGoogle Scholar
  79. Leonardi CL, Kimball AB, Papp KA et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371:1665–1674PubMedPubMedCentralCrossRefGoogle Scholar
  80. Levi M, Grange S, Frey N (2013) Exposure-response relationship of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in a large population of patients with rheumatoid arthritis. J Clin Pharmacol 53:151–159PubMedCrossRefPubMedCentralGoogle Scholar
  81. Li X, Passarell JA, Lin K, Roy A, Murthy B, Girgis IG (2017) Population pharmacokinetics and exposure–response analyses for abatacept in juvenile idiopathic arthritis. J Pharmacokinet Pharmacodyn 44:S127–S128. [Abstract W-069]Google Scholar
  82. Lin P, Suhler EB, Rosenbaum JT (2014) The future of uveitis treatment. Ophthalmology 121:365–376PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lowe PJ, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol 68:61–76PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ma L, Xu C, Su Y, Paccaly A, Kanamaluru V (2016a) Population pharmacokinetics and pharmacodynamics of the effect of sarilumab on DAS28-CRP in patients with rheumatoid arthritis. J Pharmacokinet Pharmacodyn 43:S106. [Abstract W-46]Google Scholar
  85. Ma L, Xu C, Su Y, Paccaly A, Kanamaluru V (2016b) Population pharmacokinetics and pharmacodynamics of the effect of sarilumab on absolute neutrophil counts in patients with rheumatoid arthritis. J Pharmacokinet Pharmacodyn 43:S106–S107. [Abstract W-47]Google Scholar
  86. Mallipeddi R, Grattan C (2007) Lack of response of severe steroid-dependent chronic urticaria to rituximab. Clin Exp Dermatol 32:333–334PubMedCrossRefPubMedCentralGoogle Scholar
  87. Maurer M, Weller K, Bindslev-Jensen C et al (2011) Unmet clinical needs in chronic spontaneous urticaria. A GA2LEN task force report. Allergy 66:317–330PubMedCrossRefPubMedCentralGoogle Scholar
  88. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219PubMedPubMedCentralCrossRefGoogle Scholar
  89. Menting SP, Coussens E, Pouw MF et al (2015) Developing a therapeutic range of adalimumab serum concentrations in management of psoriasis: a step toward personalized treatment. JAMA Dermatol. 151:616–622PubMedCrossRefPubMedCentralGoogle Scholar
  90. Modigliani R, Mary JY, Simon JF et al (1990) Clinical, biological, and endoscopic picture of attacks of Crohn’s disease: evolution on prednisolone. Gastroenterology 98:811–818PubMedCrossRefPubMedCentralGoogle Scholar
  91. Molodecky NA, Soon IS, Rabi DM et al (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142:46–54. e42PubMedCrossRefPubMedCentralGoogle Scholar
  92. Muralidharan KK, Kuesters G, Plavina T et al (2017a) Population pharmacokinetics and target engagement of natalizumab in patients with multiple sclerosis. J Clin Pharmacol 57:1017–1030PubMedCrossRefPubMedCentralGoogle Scholar
  93. Muralidharan KK, Steiner D, Amarante D et al (2017b) Exposure-disease response analysis of natalizumab in subjects with multiple sclerosis. J Pharmacokinet Pharmacodyn 44:263–275PubMedCrossRefPubMedCentralGoogle Scholar
  94. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509PubMedCrossRefPubMedCentralGoogle Scholar
  95. Nucala (mepolizumab) (2017) US prescribing information. GlaxoSmithKline LLC, PhiladelphiaGoogle Scholar
  96. O’Dell JR (2004) Therapeutic strategies for rheumatoid arthritis. N Engl J Med 350:2591–2602PubMedCrossRefPubMedCentralGoogle Scholar
  97. Orencia (abatacept) (2017) US prescribing information. Bristol-Myers Squibb Company, PrincetonGoogle Scholar
  98. Ocrevus (ocrelizumab) (2017) US prescribing information. Genentech, Inc. A Member of the Roche Group, South San FranciscoGoogle Scholar
  99. Papp KA, Langley RG, Lebwohl M et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371:1675–1684PubMedCrossRefPubMedCentralGoogle Scholar
  100. Papp K, Gulliver W, Lynde C et al (2011) Canadian guidelines for the management of plaque psoriasis. J Cutan Med Surg 15:210–219PubMedCrossRefPubMedCentralGoogle Scholar
  101. Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pradeep S, Smith JH (2018) Giant cell arteritis: practical pearls and updates. Curr Pain Headache Rep 22:2PubMedCrossRefPubMedCentralGoogle Scholar
  103. Reich K, Nestle FO, Papp K et al (2005) Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366:367–374CrossRefGoogle Scholar
  104. Reich K, Burden AD, Eaton JN, Hawkins NS (2012) Efficacy of biologics in the treatment of moderate to severe psoriasis: a network meta-analysis of randomized controlled trials. Br J Dermatol 166:179–188PubMedCrossRefPubMedCentralGoogle Scholar
  105. Remicade (infliximab) (2017) US prescribing information. Janssen Biotech Inc, HorshamGoogle Scholar
  106. Rituxan (rituximab) (2016) US prescribing information. Genentech Inc., South San FranciscoGoogle Scholar
  107. Rosario M, Dirks NL, Gastonguay MR et al (2015) Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment Pharmacol Ther 42:188–202PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rosario M, French JL, Dirks NL et al (2017) Exposure-efficacy relationships for vedolizumab induction therapy inp with ulcerative colitis or Crohn’s disease. J Crohns Colitis 11:921–929PubMedCrossRefPubMedCentralGoogle Scholar
  109. Roy A, Mould DR, Wang XF, Tay L, Raymond R, Pfister M (2017) Modeling and simulation of abatacept exposure and interleukin-6 response in support of recommended doses for rheumatoid arthritis. J Clin Pharmacol 47:1408–1420CrossRefGoogle Scholar
  110. Rudick RA, Stuart WH, Calabresi PA et al (2006) Natalizumab plus interferon-β-1a for relapsing multiple sclerosis. N Engl J Med 354:911–923PubMedCrossRefPubMedCentralGoogle Scholar
  111. Ruzicka T, Hanifin JM, Furue M et al (2017) Anti-interleukin-31 receptor A antibody for atopic dermatitis. N Engl J Med 376:826–835PubMedCrossRefPubMedCentralGoogle Scholar
  112. Saeki H, Kabashima K, Tokura Y et al (2017) Efficacy and safety of ustekinumab in Japanese patients with severe atopic dermatitis: a randomised, double-blind, placebo-controlled, phase II Study. Br J Dermatol 177:419–427PubMedCrossRefPubMedCentralGoogle Scholar
  113. Salinger DH, Endres CJ, Gibbs MA (2014) Exposure-response model of brodalumab in psoriasis: modeling of continuous PASI response predicts categorical PASI 75 and PASI 100 endpoints. J Pharmacokinet Pharmacodyn 41:S52–S53. [Abstract T-030]Google Scholar
  114. Salliot C, Finckh A, Katchamart W et al (2011) Indirect comparisons of the efficacy of biological antirheumatic agents in rheumatoid arthritis in patients with an inadequate response to conventional disease-modifying antirheumatic drugs or to an anti-tumour necrosis factor agent: a meta-analysis. Ann Rheum Dis 70:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sandborn WJ, Feagan BG, Stoinov S et al (2006) Certolizumab pegol administered subcutaneously is effective and well tolerated in patients with active Crohn’s disease: results from a 26-week, placebo-controlled phase III study (PRECiSE 1). Gastroenterology 130:A-107Google Scholar
  116. Shanmugam VK, Zaman NM, McNish S, Hant FN (2017) Review of current immunologic therapies for hidradenitis suppurativa. Int J Rheumatol 2017:8018192.  https://doi.org/10.1155/2017/8018192 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Siliq (brodalumab) (2017) US prescribing information. Valeant Pharmaceuticals North America LLC, BridgewaterGoogle Scholar
  118. Simponi (golimumab) (2017a) US prescribing information. Janssen Biotech Inc, HorshamGoogle Scholar
  119. Simponi (golimumab) (2017b) European Union summary of product characteristics (SmPC). Janssen Biologics B.V, LeidenGoogle Scholar
  120. Simponi Aria (golimumab) (2017) US prescribing information. Janssen Biotech Inc, HorshamGoogle Scholar
  121. Smedby KE, Askling J, Mariette X et al (2008) Autoimmune and inflammatory disorders and risk of malignant lymphomas–an update. J Intern Med 264:514–527PubMedCrossRefPubMedCentralGoogle Scholar
  122. Smith DA, Minthorn EA, Beerahee M (2011) Pharmacokinetics and pharmacodynamics of mepolizumab, an anti-interleukin-5 monoclonal antibody. Clin Pharmacokinet 50:215–227PubMedCrossRefPubMedCentralGoogle Scholar
  123. Soler D, Chapman T, Yang LL, Wyant T, Egan R, Fedyk ER (2009) The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther 330:864–875PubMedCrossRefPubMedCentralGoogle Scholar
  124. St Clair EW, Wagner CL, Fasanmade AA et al (2002) The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46:1451–1459PubMedCrossRefPubMedCentralGoogle Scholar
  125. Stelara (ustekinumab) (2017) US prescribing information. Janssen Biotech Inc, HorshamGoogle Scholar
  126. Struemper H, Thapar M, Roth D (2018) Population pharmacokinetic and pharmacodynamic analysis of belimumab administered subcutaneously in healthy volunteers and patients with systemic lupus erythematosus. Clin Pharmacokinet 57(6):717–728.PubMedCentralCrossRefPubMedGoogle Scholar
  127. Sun H, Van LM, Floch D et al (2016) Pharmacokinetics and pharmacodynamics of canakinumab in patients with systemic juvenile idiopathic arthritis. J Clin Pharmacol 56:1516–1527PubMedCrossRefGoogle Scholar
  128. Taltz (ixekizumab) (2017) US prescribing information. Eli Lilly and Company, IndianapolisGoogle Scholar
  129. Taylor PC, Steuer A, Gruber J et al (2004) Comparison of ultrasonographic assessment of synovitis and joint vascularity radiographic evaluation in a randomized, placebo-controlled study of infliximab therapy in early rheumatoid arthritis. Arthritis Rheum 50:1107–1116PubMedCrossRefGoogle Scholar
  130. Ternant D, Ducourau E, Fuzibet P et al (2015) Pharmacokinetics and concentration-effect relationship of adalimumab in rheumatoid arthritis. Br J Clin Pharmacol 79:286–297PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tracey D, Klareskog L, Sasso EH et al (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279PubMedCrossRefGoogle Scholar
  132. Tremfya (guselkumab) (2017) US prescribing information. Janssen Biotech Inc, HorshamGoogle Scholar
  133. Tysabri® (natalizumab) (2017) US prescribing information. Biogen Idec Inc, CambridgeGoogle Scholar
  134. Tzanetakou V, Kanni T, Giatrakou S et al (2016) Safety and efficacy of anakinra in severe hidradenitis suppurativa: a randomized clinical trial. JAMA Dermatol 152:52–59PubMedCrossRefGoogle Scholar
  135. US Food and Drug Administration (2008) 125104Orig1s0033 [BLA#125104/33]- Clinical pharmacology/biopharmaceutics review (Tysabri®). https://www.accessdata.fda.gov/drugsatfda_docs/bla/2008/125104Orig1s0033.pdf. Accessed 06 Feb 2018
  136. US Food and Drug Administration (2015a) Advisory Committee Briefing Document (BLA#761033, Reslizumab). https://www.fdanews.com/ext/resources/files/12-15/12-07-15-Teva-reslizumab.pdf?1517272698. Accessed 06 Feb 2018
  137. US Food and Drug Administration (2015b) Clinical pharmacology/ Biopharmaceutics Review (Cosentyx®)-125504Orig1s000 (BLA#125504). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125504Orig1s000ClinPharmR.pdf. Accessed 06 Feb 2018
  138. Van den Brande JM, Braat H, van den Brink GR et al (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124:1774–1785PubMedCrossRefPubMedCentralGoogle Scholar
  139. Vande Casteele N, Feagan BG, Vermeire S et al (2018) Exposure-response relationship of certolizumab pegol induction and maintenance therapy in patients with Crohn’s disease. Aliment Pharmacol Ther 47:229–237PubMedCrossRefPubMedCentralGoogle Scholar
  140. Vestergaard C, Deleuran M (2015) Chronic spontaneous urticaria: latest developments in aetiology, diagnosis and therapy. Ther Adv Chronic Dis 6:304–313PubMedPubMedCentralCrossRefGoogle Scholar
  141. Vogelzang EH, Kneepkens EL, Nurmohamed MT et al (2014) Anti-adalimumab antibodies and adalimumab concentrations in psoriatic arthritis; an association with disease activity at 28 and 52 weeks of follow-up. Ann Rheum Dis 73:2178–2182PubMedCrossRefGoogle Scholar
  142. Vogelzang EH, Pouw MF, Nurmohamed M et al (2015) Adalimumab trough concentrations in patients with rheumatoid arthritis and psoriatic arthritis treated with concomitant disease-modifying antirheumatic drugs. Ann Rheum Dis. 74:474–475PubMedCrossRefPubMedCentralGoogle Scholar
  143. Wang B, Yan L, Yao Z, Roskos LK (2017) Population pharmacokinetics and pharmacodynamics of benralizumab in healthy volunteers and patients with asthma. CPT Pharmacometrics Syst Pharmacol 6:249–257PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wolbink G, Goupille P, Sandborn W et al (2016) Association between plasma certolizumab pegol concentration and improvement in disease activity in rheumatoid arthritis and Crohn’s disease. Arthritis Rheumatol 68(Suppl 10). [Abstract 596]Google Scholar
  145. Xiong Y, Wang W, Ebling W et al (2013) Exposure-response modeling of canakinumab in the avoidance of flares in children with systemic juvenile idiopathic arthritis. Pediatr Rheumatol 11(Suppl 2):P181. [Abstract]CrossRefGoogle Scholar
  146. Xolair (omalizumab) (2016) US prescribing information. Genentech Inc., South San FranciscoGoogle Scholar
  147. Zhang X, Morcos PN, Saito T, Terao K (2013) Clinical pharmacology of tocilizumab for the treatment of systemic juvenile idiopathic arthritis. Expert Rev Clin Pharmacol 6:123–137PubMedCrossRefGoogle Scholar
  148. Zhang X, Chen YC, Terao K (2017) Clinical pharmacology of tocilizumab for the treatment of polyarticular-course juvenile idiopathic arthritis. Expert Rev Clin Pharmacol 10:471–482PubMedCrossRefGoogle Scholar
  149. Zheng Y, Le K, Wada R et al (2014) Population PK-PD and exposure–response modeling and simulation to support dose recommendation of Xolair in chronic idiopathic urticaria/chronic spontaneous urticaria. J Pharmacokinet Pharmacodyn 41:S32. [Abstract M-059]Google Scholar
  150. Zhou H, Hu C, Zhu Y et al (2010) Population-based exposure-efficacy modeling of ustekinumab in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 50:257–267PubMedCrossRefGoogle Scholar

Suggested Readings

  1. Lagassé HA, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty C (2017) Recent advances in therapeutic protein drug development. F1000Res 6:113.  https://doi.org/10.12688/f1000research.9970.1.eCollection2017 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Murphy K, Weaver C (2016) Janeway’s Immunology. 9th edn. Garland Science. ISBN: 978-0815345053Google Scholar
  3. Zhou H, Theil F-P (eds) (2015) ADME and Translational Pharmacokinetics/Pharmacodynamics of Therapeutic Proteins. John Wiley and Sons, Inc., Hoboken. ISBN: 978-1-118-89864-2Google Scholar
  4. Zhou H, Mould D (eds) (2019) Quantitative pharmacology and individualized therapy strategies in development of therapeutic proteins for immune-mediated inflammatory diseases. Wiley, Hoboken. ISBN: 978-1119289197Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clinical Pharmacology and Pharmacometrics, Janssen Research and DevelopmentSpring HouseUSA

Personalised recommendations