Advertisement

Monoclonal Antibodies in Cancer

  • Jürgen BarthEmail author
Chapter

Abstract

The development of hybridoma technology by Kohler and Milstein 1975 was a milestone in the development of monoclonal antibody technology. It was possible now, to generate unique, uniform monoclonal antibodies (MABs) with a defined specificity and a reproducible quality. In 1979 the first patient was treated with a therapeutic MAB, which had until then only been used as diagnostic tools. In this chapter, the different classes and characteristics of MABs used as cancer therapeutics are described. Safety aspects of selected antibodies are discussed as well.

Keywords

Therapeutic monoclonal antibodies Cancer Oncology Safety 

References

  1. Alsaab HO et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for Cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altundag K et al (2005) Re: cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 97(23):1791–1792PubMedCrossRefGoogle Scholar
  3. Anolik JH et al (2003) The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48(2):455–459PubMedCrossRefGoogle Scholar
  4. Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beers SA et al (2010) CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 47(2):107–114PubMedCrossRefGoogle Scholar
  6. Berg EA, Platts-Mills TA, Commins SP (2014) Drug allergens and food--the cetuximab and galactose-alpha-1,3-galactose story. Ann Allergy Asthma Immunol 112(2):97–101PubMedCrossRefGoogle Scholar
  7. Berinstein NL et al (1998) Association of serum rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 9(9):995–1001PubMedCrossRefGoogle Scholar
  8. Bokemeyer C et al (2012) Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 48(10):1466–1475PubMedCrossRefGoogle Scholar
  9. Brule SY et al (2015) Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer 51(11):1405–1414PubMedCrossRefGoogle Scholar
  10. Bubien JK et al (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121(5):1121–1132PubMedCrossRefGoogle Scholar
  11. Burchardt A, Wienzek-Lischka S, Schoelz C, Hackstein H, Rummel M (2012) Plasma exchange (PE) therapy (rituximab apheresis) for rituximab (R) induced progressive multifocal Leukoencephalopathy (PML) in hematologic disorders. Onkologie:133Google Scholar
  12. Buza N, Roque DM, Santin AD (2014) HER2/neu in endometrial Cancer: a promising therapeutic target with diagnostic challenges. Arch Pathol Lab Med 138(3):343–350PubMedCrossRefGoogle Scholar
  13. Cartron G et al (2016) Rationale for optimal obinutuzumab/GA101 dosing regimen in B-cell non-Hodgkin lymphoma. Haematologica 101(2):226–234PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chan HT et al (2003) CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res 63(17):5480–5489PubMedGoogle Scholar
  15. Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477PubMedCrossRefGoogle Scholar
  16. Cheng H, Gammon D, Dutton TM, Piperdi B (2009) Panitumumab-related Hypomagnesemiain patients with colorectal Cancer. Hosp Pharm 44:234–238CrossRefGoogle Scholar
  17. Cheson BD (2010) Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 28(21):3525–3530PubMedCrossRefGoogle Scholar
  18. Chiosea SI et al (2015) Molecular characterization of apocrine salivary duct carcinoma. Am J Surg Pathol 39(6):744–752PubMedCrossRefGoogle Scholar
  19. Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33(31):3541–3543PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chung CH et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117PubMedPubMedCentralCrossRefGoogle Scholar
  21. Collins SM et al (2013) Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother 62(12):1841–1849PubMedPubMedCentralCrossRefGoogle Scholar
  22. Commins SP et al (2009) Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol 123(2):426–433PubMedCrossRefGoogle Scholar
  23. Commins SP et al (2011) The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. J Allergy Clin Immunol 127(5):1286–1293. e6PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cortes J et al (2012) Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 30(14):1594–1600PubMedCrossRefGoogle Scholar
  25. Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103(7):2738–2743PubMedCrossRefGoogle Scholar
  26. Cragg MS et al (2003) Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 101(3):1045–1052PubMedCrossRefGoogle Scholar
  27. Cragg MS et al (2005) The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 8:140–174PubMedCrossRefGoogle Scholar
  28. Davies M, Duffield EA (2017) Safety of checkpoint inhibitors for cancer treatment: strategies for patient monitoring and management of immune-mediated adverse events. Immunotargets Ther 6:51–71PubMedPubMedCentralCrossRefGoogle Scholar
  29. De Roock W et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762PubMedCrossRefGoogle Scholar
  30. de Weers M et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186(3):1840–1848PubMedCrossRefGoogle Scholar
  31. Deaglio S, Mehta K, Malavasi F (2001) Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res 25(1):1–12PubMedCrossRefGoogle Scholar
  32. Deans JP et al (1998) Rapid redistribution of CD20 to a low density detergent-insoluble membrane compartment. J Biol Chem 273(1):344–348PubMedCrossRefGoogle Scholar
  33. English DP, Roque DM, Santin AD (2013) HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther 17(2):85–99PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fakih M (2008) Management of anti-EGFR-targeting monoclonal antibody-induced hypomagnesemia. Oncology (Williston Park) 22(1):74–76Google Scholar
  35. Fakih MG, Wilding G, Lombardo J (2006) Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6(2):152–156PubMedCrossRefGoogle Scholar
  36. FDA (2017) FDA approves mylotarg for treatment of acute myeloid leukemia. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574507.htm
  37. Ferris R (2013) PD-1 targeting in cancer immunotherapy. Cancer 119(23):E1–E3PubMedCrossRefGoogle Scholar
  38. Gordan LN et al (2005) Phase II trial of individualized rituximab dosing for patients with CD20-positive lymphoproliferative disorders. J Clin Oncol 23(6):1096–1102PubMedCrossRefGoogle Scholar
  39. Guo H et al (2015) Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol Cell Biol 35(1):41–51PubMedCrossRefGoogle Scholar
  40. Gutzmer R et al (2011) Management of cutaneous side effects of EGFR inhibitors: recommendations from a German expert panel for the primary treating physician. J Dtsch Dermatol Ges 9(3):195–203PubMedGoogle Scholar
  41. Haanen JB, Thienen H, Blank CU (2015) Toxicity patterns with immunomodulating antibodies and their combinations. Semin Oncol 42(3):423–428PubMedCrossRefGoogle Scholar
  42. Han TH, Zhao B (2014) Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab Dispos 42(11):1914–1920PubMedCrossRefGoogle Scholar
  43. Herold M, Schnohr S, Bittrich H (2001) Efficacy and safety of a combined rituximab chemotherapy during pregnancy. J Clin Oncol 19(14):3439PubMedCrossRefGoogle Scholar
  44. Hofheinz RD et al (2016) Recommendations for the prophylactic management of skin reactions induced by epidermal growth factor receptor inhibitors in patients with solid tumors. Oncologist 21(12):1483–1491PubMedPubMedCentralCrossRefGoogle Scholar
  45. Holcmann M, Sibilia M (2015) Mechanisms underlying skin disorders induced by EGFR inhibitors. Mol Cell Oncol 2(4):e1004969PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hsi ED et al (2008) CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 14(9):2775–2784PubMedPubMedCentralCrossRefGoogle Scholar
  47. Huhn D et al (2001) Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood 98(5):1326–1331PubMedCrossRefGoogle Scholar
  48. Hutson TE et al (2008) Targeted therapies for metastatic renal cell carcinoma: an overview of toxicity and dosing strategies. Oncologist 13(10):1084–1096PubMedCrossRefGoogle Scholar
  49. Intlekofer AM, Thompson CB (2013) At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol 94(1):25–39PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ishibashi K et al (2001) Identification of a new multigene four-transmembrane family (MS4A) related to CD20, HTm4 and beta subunit of the high-affinity IgE receptor. Gene 264(1):87–93PubMedCrossRefGoogle Scholar
  51. Ivanov A et al (2008) Radiation therapy with tositumomab (B1) anti-CD20 monoclonal antibody initiates extracellular signal-regulated kinase/mitogen-activated protein kinase-dependent cell death that overcomes resistance to apoptosis. Clin Cancer Res 14(15):4925–4934PubMedCrossRefGoogle Scholar
  52. Izzedine H et al (2010) Electrolyte disorders related to EGFR-targeting drugs. Crit Rev Oncol Hematol 73(3):213–219PubMedCrossRefGoogle Scholar
  53. Kanzaki M et al (1995) Expression of calcium-permeable cation channel CD20 accelerates progression through the G1 phase in Balb/c 3T3 cells. J Biol Chem 270(22):13099–13104PubMedCrossRefGoogle Scholar
  54. Keizer RJ et al (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(8):493–507PubMedCrossRefGoogle Scholar
  55. Klein C et al (2013) Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 5(1):22–33PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lacouture ME et al (2011) Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer 19(8):1079–1095PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li H et al (2003) Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 278(43):42427–42434PubMedCrossRefGoogle Scholar
  58. Li Y et al (2016) A mini-review for Cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int J Mol Sci 17(7):E1151PubMedCrossRefGoogle Scholar
  59. Lin P et al (2004) Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 121(4):482–488PubMedCrossRefGoogle Scholar
  60. Ludwig DL et al (2003) Monoclonal antibody therapeutics and apoptosis. Oncogene 22(56):9097–9106PubMedCrossRefGoogle Scholar
  61. Malavasi F et al (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88(3):841–886PubMedCrossRefGoogle Scholar
  62. Malavasi F et al (2011) CD38 and chronic lymphocytic leukemia: a decade later. Blood 118(13):3470–3478PubMedPubMedCentralCrossRefGoogle Scholar
  63. Maloney DG et al (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84(8):2457–2466PubMedGoogle Scholar
  64. Maloney DG et al (1997) IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90(6):2188–2195PubMedGoogle Scholar
  65. Manches O et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101(3):949–954PubMedCrossRefGoogle Scholar
  66. Mariotte D et al (2011) Anti-cetuximab IgE ELISA for identification of patients at a high risk of cetuximab-induced anaphylaxis. MAbs 3(4):396–401PubMedPubMedCentralCrossRefGoogle Scholar
  67. McLaughlin P et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833PubMedCrossRefGoogle Scholar
  68. Mellor JD et al (2013) A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 6:1PubMedPubMedCentralCrossRefGoogle Scholar
  69. Morschhauser FA et al (2013) Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large b-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 31(23):2912–2919PubMedCrossRefGoogle Scholar
  70. Mossner E et al (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115(22):4393–4402PubMedPubMedCentralCrossRefGoogle Scholar
  71. Muller C et al (2012) The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood 119(14):3276–3284PubMedCrossRefGoogle Scholar
  72. Nadler LM et al (1981) A unique cell surface antigen identifying lymphoid malignancies of B cell origin. J Clin Invest 67(1):134–140PubMedPubMedCentralCrossRefGoogle Scholar
  73. National Cancer Institute 2014 FDA approval for tositumomab and iodine I 131 tositumomab. Internet: https://www.cancer.gov/about-cancer/treatment/drugs/fda-tositumomab-I131iodine-tositumomab
  74. Negro A, Brar BK, Lee KF (2004) Essential roles of Her2/erbB2 in cardiac development and function. Recent Prog Horm Res 59:1–12PubMedCrossRefGoogle Scholar
  75. Nguyen DT et al (1999) IDEC-C2B8 anti-CD20 (rituximab) immunotherapy in patients with low-grade non-Hodgkin’s lymphoma and lymphoproliferative disorders: evaluation of response on 48 patients. Eur J Haematol 62(2):76–82PubMedCrossRefGoogle Scholar
  76. Niederfellner G et al (2011) Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 118(2):358–367PubMedCrossRefGoogle Scholar
  77. O’Brien SM et al (2001) Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol 19(8):2165–2170PubMedCrossRefGoogle Scholar
  78. Ohta Y et al (1996) Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 2(8):1411–1416PubMedGoogle Scholar
  79. Overdijk MB et al (2015) Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7(2):311–321PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pfreundschuh M, Zeynalova S, Poeschel V, Haenel M, Schmitz N, Hensel M, Reiser M, Loeffler M, Schubert J (2007) Dose-dense rituximab improves outcome of elderly patients with poor-prognosis diffuse large B-cell lymphoma (DLBCL): results of the DENSE-R-CHOP-14 trial of the German high-grade non-Hodgkin lymphoma study group (DSHNHL). Blood 110(11):789Google Scholar
  82. Pfreundschuh M et al (2014) Suboptimal dosing of rituximab in male and female patients with DLBCL. Blood 123(5):640–646PubMedCrossRefGoogle Scholar
  83. Polyak MJ, Deans JP (2002) Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood 99(9):3256–3262PubMedCrossRefGoogle Scholar
  84. Polyak MJ et al (2008) CD20 homo-oligomers physically associate with the B cell antigen receptor. Dissociation upon receptor engagement and recruitment of phosphoproteins and calmodulin-binding proteins. J Biol Chem 283(27):18545–18552PubMedCrossRefGoogle Scholar
  85. Potthoff K et al (2011) Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion. Ann Oncol 22(3):524–535PubMedCrossRefGoogle Scholar
  86. Quartier P et al (2001) Treatment of childhood autoimmune haemolytic anaemia with rituximab. Lancet 358(9292):1511–1513PubMedCrossRefGoogle Scholar
  87. Radhakrishnan SV et al (2017) Elotuzumab as a novel anti-myeloma immunotherapy. Hum Vaccin Immunother 13(8):1751–1757PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rotte A, Jin JY, Lemaire V (2018) Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol 29(1):71–83PubMedCrossRefGoogle Scholar
  89. Rubin I, Yarden Y (2001) The basic biology of HER2. Ann Oncol 12(Suppl 1):S3–S8PubMedCrossRefGoogle Scholar
  90. Saleh H et al (2012) Anaphylactic reactions to oligosaccharides in red meat: a syndrome in evolution. Clin Mol Allergy 10(1):5PubMedPubMedCentralCrossRefGoogle Scholar
  91. Santin AD et al (2008) Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet 102(2):128–131PubMedCrossRefGoogle Scholar
  92. Santonocito AM et al (2004) Flow cytometric detection of aneuploid CD38(++) plasmacells and CD19(+) B-lymphocytes in bone marrow, peripheral blood and PBSC harvest in multiple myeloma patients. Leuk Res 28(5):469–477PubMedCrossRefGoogle Scholar
  93. Schlingmann KP et al (2007) TRPM6 and TRPM7—gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772(8):813–821PubMedCrossRefGoogle Scholar
  94. Schneider MR, Wolf E (2009) The epidermal growth factor receptor ligands at a glance. J Cell Physiol 218(3):460–466PubMedCrossRefGoogle Scholar
  95. Schrag D et al (2005) Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 97(16):1221–1224PubMedCrossRefGoogle Scholar
  96. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39PubMedCrossRefGoogle Scholar
  97. Singh B, Carpenter G, Coffey RJ 2016 EGF receptor ligands: recent advances. F1000Res 5.  https://doi.org/10.12688/f1000research.9025.1 CrossRefGoogle Scholar
  98. Stashenko P et al (1980) Characterization of a human B lymphocyte-specific antigen. J Immunol 125(4):1678–1685PubMedGoogle Scholar
  99. Steinke JW, Platts-Mills TA, Commins SP (2015) The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol 135(3):589–596PubMedPubMedCentralCrossRefGoogle Scholar
  100. Stolz C, Schuler M (2009) Molecular mechanisms of resistance to rituximab and pharmacologic strategies for its circumvention. Leuk Lymphoma 50(6):873–885PubMedCrossRefGoogle Scholar
  101. Suzuki S et al (2016) Current status of immunotherapy. Jpn J Clin Oncol 46(3):191–203PubMedCrossRefGoogle Scholar
  102. Tabernero J, Pfeiffer P, Cervantes A (2008) Administration of cetuximab every 2 weeks in the treatment of metastatic colorectal cancer: an effective, more convenient alternative to weekly administration? Oncologist 13(2):113–119PubMedCrossRefGoogle Scholar
  103. Tedder TF, Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15(9):450–454PubMedCrossRefGoogle Scholar
  104. Tedder TF et al (1988) Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci U S A 85(1):208–212PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tejpar S et al (2007) Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 8(5):387–394PubMedCrossRefGoogle Scholar
  106. Tejpar S, et al. 2016 Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal Cancer: retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol.  https://doi.org/10.1001/jamaoncol.2016.3797 PubMedCrossRefGoogle Scholar
  107. Teplinsky E, Muggia F (2014) Targeting HER2 in ovarian and uterine cancers: challenges and future directions. Gynecol Oncol 135(2):364–370PubMedCrossRefGoogle Scholar
  108. Tesfa D, Palmblad J (2011) Late-onset neutropenia following rituximab therapy: incidence, clinical features and possible mechanisms. Expert Rev Hematol 4(6):619–625PubMedCrossRefGoogle Scholar
  109. Tesfa D et al (2011) Late-onset neutropenia following rituximab therapy in rheumatic diseases: association with B lymphocyte depletion and infections. Arthritis Rheum 63(8):2209–2214PubMedCrossRefGoogle Scholar
  110. Tobinai K et al (2017) A review of Obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv Ther 34(2):324–356PubMedCrossRefGoogle Scholar
  111. Tuefferd M et al (2007) HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients. PLoS One 2(11):e1138PubMedPubMedCentralCrossRefGoogle Scholar
  112. Van Cutsem E et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29(15):2011–2019PubMedCrossRefGoogle Scholar
  113. Van Cutsem E et al (2014) Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25 Suppl 3:iii1-9PubMedGoogle Scholar
  114. Venook A, Niedzwiecki D, Innocenti F, Fruth B, Greene B, O’Neil BH, Shaw JE, Atkins JN, Horvath LE, Polite BN, Meyerhardt JA, O’Reilly EM, Goldberg RM, Hochster HS, Blanke CD, Schilsky RL, Mayer RJ, Bertagnolli MM, Lenz H-J (2016) Impact of primary (1°) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 34:3504CrossRefGoogle Scholar
  115. Verheul HM, Pinedo HM (2007) Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7(6):475–485PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vesely MD et al (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271PubMedCrossRefGoogle Scholar
  117. Weber JS, Kahler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697PubMedCrossRefGoogle Scholar
  118. Weber JS et al (2015) Toxicities of immunotherapy for the practitioner. J Clin Oncol 33(18):2092–2099PubMedPubMedCentralCrossRefGoogle Scholar
  119. Weiss L et al (2017) Influence of body mass index on survival in indolent and mantle cell lymphomas: analysis of the StiL NHL1 trial. Ann Hematol 96(7):1155–1162PubMedPubMedCentralCrossRefGoogle Scholar
  120. Weng WK et al (2010) Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin’s lymphoma. J Clin Oncol 28(2):279–284PubMedCrossRefGoogle Scholar
  121. Widakowich C et al (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12(12):1443–1455PubMedCrossRefGoogle Scholar
  122. Wolchok JD et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420PubMedCrossRefGoogle Scholar
  123. Wolchok JD et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11(2):155–164PubMedCrossRefGoogle Scholar
  124. Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wu J et al (2015) Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol 8:104PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yildirim M et al (2015) The role of gender in patients with diffuse large B cell lymphoma treated with rituximab-containing regimens: a meta-analysis. Arch Med Sci 11(4):708–714PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhao YY et al (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273(17):10261–10269PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Justus-Liebig-Universität, Medizinische Klinik IV, UniversitätsklinikGiessenGermany

Personalised recommendations