Advertisement

Gene Therapy

  • Hao Wu
  • Amit Kumar Chaudhary
  • Ram I. MahatoEmail author
Chapter

Abstract

The human body is composed of a variety of proteins. Almost all human diseases are the results of improper production or functioning of proteins. Traditional small molecule drugs usually interact with proteins such as enzymes, hormones, transcriptional factors and even RNA molecules to exert their therapeutic potential. However, many severe and debilitating hereditary diseases (e.g., type I diabetes, hemophilia, cystic fibrosis) and several chronic diseases (e.g., hypertension, ischemic heart disease, asthma, Parkinson’s disease, motor neuron disease, multiple sclerosis) remain inadequately treated by the conventional pharmaceutical approaches. This chapter describes progress made over the years in repairing, turning-off or replacing dysfunctional genes with exogenous DNA as a novel approach to treat, cure, or ultimately prevent disease by changing the expression of a person’s genes.

Keywords

Gene therapy Viral and non-viral vectors Plasmid DNA Minicircle Genome engineering CRISPR-Cas9 

Notes

Acknowledgements

We would like to thank the National Institutes of Health (NIH) for the financial support (R01DK69968 and R01GM113166).

References

  1. Aiuti A, Roncarolo MG, Naldini L (2017) Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med 9(6):737–740PubMedPubMedCentralCrossRefGoogle Scholar
  2. Apolonia L, Waddington SN, Fernandes C, Ward NJ, Bouma G, Blundell MP, Thrasher AJ, Collins MK, Philpott NJ (2007) Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 15(11):1947–1954PubMedCrossRefGoogle Scholar
  3. Armentano D, Sookdeo CC, Hehir KM, Gregory RJ, St George JA, Prince GA, Wadsworth SC, Smith AE (1995) Characterization of an adenovirus gene transfer vector containing an E4 deletion. Hum Gene Ther 6(10):1343–1353PubMedCrossRefGoogle Scholar
  4. Arrode-Bruses G, Sheffer D, Hegde R, Dhillon S, Liu Z, Villinger F, Narayan O, Chebloune Y (2010) Characterization of T-cell responses in macaques immunized with a single dose of HIV DNA vaccine. J Virol 84(3):1243–1253PubMedCrossRefGoogle Scholar
  5. Bedouelle H, Duplay P (1988) Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the klenow polymerase into the periplasmic space. Eur J Biochem 171(3):541–549PubMedCrossRefGoogle Scholar
  6. Bellon G, Michel-Calemard L, Thouvenot D, Jagneaux V, Poitevin F, Malcus C, Accart N et al (1997) Aerosol administration of a recombinant adenovirus expressing CFTR to cystic fibrosis patients: a phase I clinical trial. Hum Gene Ther 8(1):15–25PubMedCrossRefGoogle Scholar
  7. Bigger BW, Tolmachov O, Collombet JM, Fragkos M, Palaszewski I, Coutelle C (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276(25):23018–23027PubMedCrossRefGoogle Scholar
  8. Blackburn MR, Kellems RE (2005) Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. Adv Immunol 86:1–41PubMedCrossRefGoogle Scholar
  9. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G et al (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270(5235):475–480PubMedCrossRefGoogle Scholar
  10. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, Drack AV, Fingert JH, Worthington KS, Wiley LA, Mullins RF, Stone EM, Tucker BA (2018) CRISPR-Cas9 genome engineering: treating inherited retinal degeneration. Prog Retin Eye Res 65:28–49 pii: S1350-9462(17)30079-4PubMedCrossRefGoogle Scholar
  12. Büning H (2013) Gene therapy enters the pharma market: the short story of a long journey. EMBO Mol Med 5(1):1–3PubMedPubMedCentralCrossRefGoogle Scholar
  13. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512PubMedCrossRefGoogle Scholar
  14. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672PubMedCrossRefGoogle Scholar
  15. Chaudhary AK, Mondal G, Kumar V, Kattel K, Mahato RI (2017) Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett 402:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen HH, Mack LM, Kelly R, Ontell M, Kochanek S, Clemens PR (1997) Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci U S A 94(5):1645–1650PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen SH, Kosai K, Xu B, Pham-Nguyen K, Contant C, Finegold MJ, Woo SL (1996) Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival. Cancer Res 56(16):3758–3762PubMedGoogle Scholar
  18. Chen ZY, He CY, Ehrhardt A, Kay MA (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8(3):495–500PubMedCrossRefGoogle Scholar
  19. Chillon M, Lee JH, Fasbender A, Welsh MJ (1998) Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 5(7):995–1002PubMedCrossRefGoogle Scholar
  20. Chung TC, Jones CH, Gollakota A, Kamal Ahmadi M, Rane S, Zhang G, Pfeifer BA (2015) Improved Escherichia coli Bactofection and cytotoxicity by heterologous expression of bacteriophage ΦX174 Lysis gene E. Mol Pharm 12(5):1691–1700PubMedCrossRefGoogle Scholar
  21. Crook NC, Freeman ES, Alper HS (2011) Re-engineering multicloning sites for function and convenience. Nucleic Acids Res 39(14):e92PubMedPubMedCentralCrossRefGoogle Scholar
  22. Croyle MA, Cheng X, Wilson JM (2001) Development of formulations that enhance the physical stability of viral vectors for human gene therapy. Gene Ther 8(17):1281–1291PubMedCrossRefGoogle Scholar
  23. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM (1995) Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci U S A 92(5):1401–1405PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dang CV, Lee WM (1988) Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol 8(10):4048–4054PubMedPubMedCentralCrossRefGoogle Scholar
  25. Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4(12):1341–1349PubMedCrossRefGoogle Scholar
  26. Daud AI, Deconti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN et al (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26(36):5896–5903PubMedPubMedCentralCrossRefGoogle Scholar
  27. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF (2000) Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 105(11):1573–1587PubMedPubMedCentralCrossRefGoogle Scholar
  28. Edelstein ML, Abedi MR, Wixon J, Edelstein RM (2004) Gene therapy clinical trials worldwide 1989-2004-an overview. J Gene Med 6(6):597–602PubMedCrossRefGoogle Scholar
  29. Erles K, Sebokova P, Schlehofer JR (1999) Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 59(3):406–411PubMedCrossRefGoogle Scholar
  30. Ertl HC (2005) Challenges of immune responses in gene replacement therapy. IDrugs 8(9):736–738PubMedGoogle Scholar
  31. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumor rejection. Nature 543(7643):113–117PubMedPubMedCentralCrossRefGoogle Scholar
  32. Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, Dirstine T, Ciullo C, Lescarbeau R, Seitzer J, Shah RR, Shah A, Ling D, Growe J, Pink M, Rohde E, Wood KM, Salomon WE, Harrington WF, Dombrowski C, Strapps WR, Chang Y, Morrissey DV (2018) A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 22(9):2227–2235PubMedCrossRefGoogle Scholar
  33. Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenstein B, Taylor G, Walden S, Wetzel R (1996) A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 7(9):1145–1159PubMedCrossRefGoogle Scholar
  34. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 25:e3015CrossRefGoogle Scholar
  35. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348(3):255–256PubMedCrossRefGoogle Scholar
  36. Hagstrom JN, Couto LB, Scallan C, Burton M, McCleland ML, Fields PA, Arruda VR, Herzog RW, High KA (2000) Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood 95(8):2536–2542PubMedGoogle Scholar
  37. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519(7542):199–202PubMedPubMedCentralCrossRefGoogle Scholar
  38. High KA, Aubourg P (2011) RAAV human trial experience. Methods Mol Biol 807:429–457PubMedCrossRefGoogle Scholar
  39. Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D, Schulte M et al (2009) Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci U S A 106(1):44–49PubMedCrossRefGoogle Scholar
  40. Huang C, Li M, Chen C, Yao Q (2008) Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 12(5):637–645PubMedCrossRefGoogle Scholar
  41. Huang MT, Gorman CM (1990) The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol Cell Biol 10(4):1805–1810PubMedPubMedCentralCrossRefGoogle Scholar
  42. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R, Langford G, Murray N, Yla-Herttuala S (2004) AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 10(5):967–972PubMedCrossRefGoogle Scholar
  43. Itaka K, Yamauchi K, Harada A, Nakamura K, Kawaguchi H, Kataoka K (2003) Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials 24(24):4495–4506PubMedCrossRefGoogle Scholar
  44. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529PubMedCrossRefGoogle Scholar
  45. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105PubMedCrossRefGoogle Scholar
  46. Kennedy EM, Cullen BR (2015) Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479-480:213–220PubMedCrossRefGoogle Scholar
  47. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254PubMedCrossRefGoogle Scholar
  48. Kim J, Chen CP, Rice KG (2005) The proteasome metabolizes peptide-mediated nonviral gene delivery systems. Gene Ther 12(21):1581–1590PubMedCrossRefGoogle Scholar
  49. Kim W, Lee S, Kim HS, Song M, Cha YH, Kim YH, Shin J, Lee ES, Joo Y, Song JJ, Choi EJ, Choi JW, Lee J, Kang M, Yook JI, Lee MG, Kim YS, Paik S, Kim HH (2018) Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth. Genome Res 28(3):374–382.  https://doi.org/10.1101/gr.223891.117 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Lai WF, Tang GP, Wang X, Li G, Yao H, Shen Z, Lu G, Poon WS, Kung HF, Lin MC (2011) Cyclodextrin-PEI-tat polymer as a vector for plasmid DNA delivery to placenta mesenchymal stem cells. Bionanoscience 1(3):89–96PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lesoon-Wood LA, Kim WH, Kleinman HK, Weintraub BD, Mixson AJ (1995) Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum Gene Ther 6(4):395–405PubMedCrossRefGoogle Scholar
  52. Levine BL, Humeau LM, Boyer J, Macgregor RR, Rebello T, Lu X, Binder GK, Slepushkin V, Lemiale F, Mascola JR, Bushman FD, Dropulic B, June CH (2006) Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A 103(46):17372–17377PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lewitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10(4):309–319PubMedCrossRefGoogle Scholar
  54. Li F, Mahato RI (2009) Bipartite vectors for co-expression of a growth factor cDNA and short hairpin RNA against an apoptotic gene. J Gene Med 11(9):764–771PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lochmuller H, Petrof BJ, Pari G, Larochelle N, Dodelet V, Wang Q, Allen C et al (1996) Transient immunosuppression by FK506 permits a sustained high-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscles of adult dystrophic (mdx) mice. Gene Ther 3(8):706–716PubMedGoogle Scholar
  56. Louis N, Evelegh C, Graham FL (1997) Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233:423–429PubMedCrossRefGoogle Scholar
  57. MacGregor RR (2001) Clinical protocol. A phase 1 open-label clinical trial of the safety and tolerability of single escalating doses of autologous CD4 T cells transduced with VRX496 in HIV-positive subjects. Hum Gene Ther 12(16):2028–2029PubMedGoogle Scholar
  58. Mahato RI, Rolland A, Tomlinson E (1997) Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm Res 14(7):853–859PubMedCrossRefGoogle Scholar
  59. Mahato RI, Smith LC, Rolland A (1999) Pharmaceutical perspectives of nonviral gene therapy. Adv Genet 41:95–156PubMedCrossRefGoogle Scholar
  60. Majhen D, Ambriovic-Ristov A (2006) Adenoviral vectors–how to use them in cancer gene therapy? Virus Res 119(2):121–133PubMedCrossRefGoogle Scholar
  61. Manilla P, Rebello T, Afable C, Lu X, Slepushkin V, Humeau LM, Schonely K et al (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 16(1):17–25PubMedCrossRefGoogle Scholar
  62. Mannisto M, Vanderkerken S, Toncheva V, Elomaa M, Ruponen M, Schacht E, Urtti A (2002) Structure-activity relationships of poly(L-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release 83(1):169–182PubMedCrossRefGoogle Scholar
  63. Manthorpe M, Hobart P, Hermanson G, Ferrari M, Geall A, Goff B, Rolland A (2005) Plasmid vaccines and therapeutics: from design to applications. Adv Biochem Eng Biotechnol 99:41–92PubMedGoogle Scholar
  64. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10):867–874PubMedCrossRefGoogle Scholar
  65. McGinley L, McMahon J, Strappe P, Barry F, Murphy M, O’Toole D, O’Brien T (2011) Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Res Ther 2(2):12PubMedPubMedCentralCrossRefGoogle Scholar
  66. McKenzie DL, Collard WT, Rice KG (1999) Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. J Pept Res 54(4):311–318PubMedCrossRefGoogle Scholar
  67. Medina-Kauwe LK (2003) Endocytosis of adenovirus and adenovirus capsid proteins. Adv Drug Deliv Rev 55(11):1485–1496PubMedCrossRefGoogle Scholar
  68. Melo LG, Pachori AS, Gnecchi M, Dzau VJ (2006) Genetic therapies for cardiovascular diseases. Trends Mol Med 11(5):240–250CrossRefGoogle Scholar
  69. Mendell JR, Miller A (2004) Gene transfer for neurologic disease: agencies, policies, and process. Neurology 63(12):2225–2232PubMedCrossRefGoogle Scholar
  70. Mittal A, Chitkara D, Behrman SW, Mahato RI (2014) Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35(25):7077–7087PubMedCrossRefGoogle Scholar
  71. Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K (2004) Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J Am Chem Soc 126(8):2355–2361PubMedCrossRefGoogle Scholar
  72. Miyata K, Kakizawa Y, Nishiyama N, Yamasaki Y, Watanabe T, Kohara M, Kataoka K (2005) Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver. J Control Release 109(1–3):15–23PubMedCrossRefGoogle Scholar
  73. Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A 94(19):10319–10323PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mondal G, Almawash S, Chaudhary AK, Mahato RI (2017) EGFR-targeted cCationic polymeric mixed micelles for codelivery of gemcitabine and miR-205 for treating advanced pancreatic cancer. Mol Pharm 14(9):3121–3133PubMedCrossRefGoogle Scholar
  75. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119(4):964–975PubMedPubMedCentralCrossRefGoogle Scholar
  76. Morgan RA, Walker R, Carter CS, Natarajan V, Tavel JA, Bechtel C, Herpin B, Muul L, Zheng Z, Jagannatha S, Bunnell BA, Fellowes V, Metcalf JA, Stevens R, Baseler M, Leitman SF, Read EJ, Blaese RM, Lane HC (2005) Preferential survival of CD4+ T lymphocytes engineered with anti-human immunodeficiency virus (HIV) genes in HIV-infected individuals. Hum Gene Ther 16(9):1065–1074PubMedCrossRefGoogle Scholar
  77. Mori S, Wang L, Takeuchi T, Kanda T (2004) Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 330(2):375–383PubMedCrossRefGoogle Scholar
  78. Muul LM, Tuschong LM, Soenen SL, Jagadeesh GJ, Ramsey WJ, Long Z, Carter CS, Garabedian EK, Alleyne M, Brown M, Bernstein W, Schurman SH, Fleisher TA, Leitman SF, Dunbar CE, Blaese RM, Candotti F (2003) Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 101(7):2563–2569PubMedCrossRefGoogle Scholar
  79. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31(4):317–334PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nemerow GR, Stewart PL (1999) Role of av integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 63(3):725–734PubMedPubMedCentralGoogle Scholar
  82. Panakanti R, Mahato RI (2009) Bipartite adenoviral vector encoding hHGF and hIL-1Ra for improved human islet transplantation. Pharm Res 26(3):587–596PubMedCrossRefGoogle Scholar
  83. Peng Z (2005) Current status of gendicine in China: recombinant human ad-p53 agent for treatment of cancers. Hum Gene Ther 16(9):1016–1027PubMedCrossRefGoogle Scholar
  84. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455PubMedPubMedCentralCrossRefGoogle Scholar
  85. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24(6):1020–1027PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ranga U, Woffendin C, Verma S, Xu L, June CH, Bishop DK, Nabel GJ (1998) Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc Natl Acad Sci U S A 95(3):1201–1206PubMedPubMedCentralCrossRefGoogle Scholar
  88. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80(1–2):148–158PubMedCrossRefGoogle Scholar
  89. Reilly JP, Grise MA, Fortuin FD, Vale PR, Schaer GL, Lopez J, Van Camp JR et al (2005) Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in no-option patients. J Interv Cardiol 18(1):27–31PubMedCrossRefGoogle Scholar
  90. Rincon MY, Vandendriessche T, Chuah MK (2015) Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res 108(1):4–20PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rip J, Nierman MC, Sierts JA, Petersen W, Van den Oever K, Van Raalte D, Ross CJ et al (2005) Gene therapy for lipoprotein lipase deficiency: working toward clinical application. Hum Gene Ther 16(11):1276–1286PubMedCrossRefGoogle Scholar
  92. Roth JA, Cristiano RJ (1997) Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 89(1):21–39PubMedCrossRefGoogle Scholar
  93. Ryu WS, Mertz JE (1989) Simian virus 40 late transcripts lacking excisable intervening sequences are defective in both stability in the nucleus and transport to the cytoplasm. J Virol 63(10):4386–4394PubMedPubMedCentralGoogle Scholar
  94. Salmon F, Grosios K, Petry H (2014) Safety profile of recombinant adeno-associated viral vectors: focus on alipogene tiparvovec (Glybera®). Expert Rev Clin Pharmacol 7(1):53–65PubMedCrossRefGoogle Scholar
  95. Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M, Hurskainen H et al (2000) Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 11(16):2197–2205PubMedCrossRefGoogle Scholar
  96. Sanei Ata-Abadi N, Dormiani K, Khazaie Y, Ghaedi K, Forouzanfar M, Lachinani L, Rezaei N, Kiani-Esfahani A, Nasr-Esfahani MH (2015) Construction of a new minicircle DNA carrying an enhanced green florescent protein reporter gene for efficient expression into mammalian cell lines. Mol Biol Rep 42(7):1175–1185PubMedCrossRefGoogle Scholar
  97. Shirakawa T (2009) Clinical trial design for adenoviral gene therapy products. Drug News Perspect 22(3):140–145PubMedCrossRefGoogle Scholar
  98. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, Rossi S et al (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18(3):643–650PubMedCrossRefGoogle Scholar
  99. Simons JW, Sacks N (2006) Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol 24(5):419–424PubMedCrossRefGoogle Scholar
  100. Singh S, Chitkara D, Kumar V, Behrman SW, Mahato RI (2013) miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett 334(2):211–220PubMedCrossRefGoogle Scholar
  101. Singh S, Narang AS, Mahato RI (2011) Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res 28(12):2996–3015PubMedCrossRefGoogle Scholar
  102. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645PubMedCrossRefGoogle Scholar
  103. Springer ML (2006) A balancing act: therapeutic approaches for the modulation of angiogenesis. Curr Opin Investig Drugs 7(3):243–250PubMedGoogle Scholar
  104. Stenler S, Wiklander OP, Badal-Tejedor M, Turunen J, Nordin JZ, Hallengärd D, Wahren B, Andaloussi SE, Rutland MW, Smith CI, Lundin KE, Blomberg P (2014) Micro-minicircle gene therapy: implications of size on fermentation, Complexation, shearing resistance, and expression. Mol Ther Nucleic Acids 2:e140PubMedCrossRefGoogle Scholar
  105. Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL, Charbonneau F et al (2006) Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther 13(21):1503–1511PubMedCrossRefGoogle Scholar
  106. Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P, Nemerow GR (1997) Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J 16(6):1189–1198PubMedPubMedCentralCrossRefGoogle Scholar
  107. Stolberg SG (1999) The biotech death of Jesse Gelsinger. N Y Times Mag 136–140:149–150Google Scholar
  108. Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ, Ozawa K, Natsoulis G (1997) Adeno-associated virus rep proteins target DNA sequences to a unique locus in the human genome. J Virol 71(10):7951–7959PubMedPubMedCentralGoogle Scholar
  109. Tacket CO, Roy MJ, Widera G, Swain WF, Broome S, Edelman R (1999) Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine 17(22):2826–2829PubMedCrossRefGoogle Scholar
  110. Tuszynski MH, Thal L, Pay M, Salmon DP, Hs U, Patel P et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11(5):551–555PubMedCrossRefGoogle Scholar
  111. U.S. Department of Health and Human Services (1998) Guidance for industry: guidance for human somatic cell therapy and gene therapy. Center for Biologics Evaluation and Research. United States Food and Drug Administration, RockvilleGoogle Scholar
  112. Uckert W, Kammertons T, Haack K, Qin Z, Gebert J, Schendel DJ, Blankenstein T (1998) Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. Hum Gene Ther 9(6):855–865PubMedCrossRefGoogle Scholar
  113. van Pijkeren JP, Morrissey D, Monk IR, Cronin M, Rajendran S, O’Sullivan GC, Gahan CG, Tangney M (2010) A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum Gene Ther 21(4):405–416PubMedCrossRefGoogle Scholar
  114. Varghese S, Rabkin SD (2002) Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 9(12):967–978PubMedCrossRefGoogle Scholar
  115. Verma IM (1990) Gene therapy. Sci Am 263(5):68–72 81–64PubMedCrossRefGoogle Scholar
  116. Vasan S, Hurley A, Schlesinger SJ, Hannaman D, Gardiner DF, Dugin DP, Boente-Carrera M et al (2011) In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 6(5):e19252PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vassaux G, Nitcheu J, Jezzard S, Lemoine NR (2006) Bacterial gene therapy strategies. J Pathol 208(2):290–298PubMedCrossRefGoogle Scholar
  118. Wang DA, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI (2002) Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3(6):1197–1207PubMedCrossRefGoogle Scholar
  119. Weber W, Fussenegger M (2006) Pharmacologic transgene control systems for gene therapy. J Gene Med 8(5):535–556PubMedCrossRefGoogle Scholar
  120. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11(18):1363–1369PubMedCrossRefGoogle Scholar
  121. Wiley (2017) The Journal of Gene Medicine Clinical Trials Worldwide Database. http://www.abedia.com/wiley/index.html
  122. Wolfram JA, Donahue JK (2013) Gene therapy to treat cardiovascular disease. J Am Heart Assoc 2(4):e000119PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wright JF, Qu G, Tang C, Sommer JM (2003) Recombinant adeno-associated virus: formulation challenges and strategies for a gene therapy vector. Curr Opin Drug Discov Devel 6(2):174–178PubMedGoogle Scholar
  124. Wu H, Yoon AR, Li F, Yun CO, Mahato RI (2011) RGD peptide-modified adenovirus expressing HGF and XIAP improves islet transplantation. J Gene Med 13(12):658–669PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14(3):316–327PubMedCrossRefGoogle Scholar
  126. Xia ZJ, Chang JH, Zhang L, Jiang WQ, Guan ZZ, Liu JW, Zhang Y et al (2004) Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng 23(12):1666–1670PubMedGoogle Scholar
  127. Xu ZL, Mizuguchi H, Sakurai F, Koizumi N, Hosono T, Kawabata K, Watanabe Y, Yamaguchi T, Hayakawa T (2005) Approaches to improving the kinetics of adenovirus-delivered genes and gene products. Adv Drug Deliv Rev 57(5):781–802PubMedCrossRefGoogle Scholar
  128. Yan Z, Zhang Y, Duan D, Engelhardt JF (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97(12):6716–6721PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA (2002) Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 76(9):4580–4590PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhang WW, Li L, Li D, Liu J, Li X, Li W, Xu X, Zhang MJ, Chandler LA, Lin H, Hu A, Xu W, Lam DM (2018) The first approved gene therapy product for Cancer ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther 29(2):160–179PubMedCrossRefGoogle Scholar
  131. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880PubMedPubMedCentralGoogle Scholar
  132. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33(1):73–80PubMedCrossRefGoogle Scholar
  133. Zwaka T (2006) Use of genetically modified stem cells in experimental gene therapies. In: Regenerative medicine. National Institutes of Health, BethesdaGoogle Scholar

Suggested Reading

  1. Narang A, Mahato RI (2010) Targeted delivery of small and macromolecular drugs. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. National Institutes of Health (2006) Regenerative medicine. National Institutes of Health, BethesdaGoogle Scholar
  3. Schleef M et al (2001) Plasmids for therapy cbrsand vaccination. Wiley-VCH, New YorkCrossRefGoogle Scholar
  4. Schleef M (2005) DNA pharmaceuticals: formulation and delivery in gene therapy, DNA vaccination and immunotherapy. John Wiley & Sons, HobokenCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.WuXi Biologics, a WuXi AppTec AffiliateShanghaiChina
  2. 2.Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations