Advertisement

Oligonucleotides

  • Raymond M. SchiffelersEmail author
  • Erik Oude Blenke
  • Enrico Mastrobattista
Chapter

Abstract

Oligonucleotides are short chains of single stranded or double stranded nucleotides, either DNA, RNA or a combination and in some cases chemically modified to improve their application as a drug substance. They are applied to modulate endogenous mechanisms of DNA and RNA processing, thereby modifying disease pathways at the genetic level, rather than at the protein level like conventional drugs. Factors that limit the application of oligonucleotide drugs are immunogenicity, instability and poor pharmacokinetics. In this chapter, several mechanisms are described of how oligonucleotides can act as drugs, as well as several approaches to overcome the limitations that are inherent to this drug class. A recent advancement is the formulation of oligonucleotides in lipid nanoparticles, an approach that has proven to be successful and has led to the first marketed siRNA drug.

Keywords

Oligonucleotides Base pairing Transcriptional modulation RNA interference Chemical modifications 

References

  1. Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P (2017) Development of exon skipping therapies for Duchenne muscular dystrophy: a critical review and a perspective on the outstanding issues. Nucleic Acid Ther 27(5):251–259CrossRefGoogle Scholar
  2. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143CrossRefGoogle Scholar
  3. Chan CW, Khachigian LM (2009) DNAzymes and their therapeutic possibilities. Intern Med J 39(4):249–251CrossRefGoogle Scholar
  4. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefGoogle Scholar
  5. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070CrossRefGoogle Scholar
  6. Dirin M, Winkler J (2013) Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides. Expert Opin Biol Ther 13(6):875–888CrossRefGoogle Scholar
  7. Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36(16):5123–5138CrossRefGoogle Scholar
  8. Ellis JC, Brown JW (2009) The RNase P family. RNA Biol 6(4):362–369CrossRefGoogle Scholar
  9. FDA Drug Approval Package 2016. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/206488_TOC.cfm. Accessed 9 Jan 2019
  10. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811CrossRefGoogle Scholar
  11. Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51CrossRefGoogle Scholar
  12. Hecker M, Wagner AH (2017) Transcription factor decoy technology: a therapeutic update. Biochem Pharmacol 144:29–34CrossRefGoogle Scholar
  13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefGoogle Scholar
  14. Lehto T, Ezzat K, Wood MJA, El Andaloussi S (2016) Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106(Pt A):172–182CrossRefGoogle Scholar
  15. Lopes RD, Williams JB, Mehta RH, Reyes EM, Hafley GE, Allen KB, Mack MJ, Peterson ED, Harrington RA, Gibson CM, Califf RM, Kouchoukos NT, Ferguson TB, Lorenz TJ, Alexander JH (2012) Edifoligide and long-term outcomes after coronary artery bypass grafting: project of ex-vivo vein graft engineering via transfection IV (PREVENT IV) 5-year results. Am Heart J 164(3):379–386. e371CrossRefGoogle Scholar
  16. Martins KA, Bavari S, Salazar AM (2015) Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines 14(3):447–459CrossRefGoogle Scholar
  17. Miller CM, Donner AJ, Blank EE, Egger AW, Kellar BM, Ostergaard ME, Seth PP, Harris EN (2016) Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res 44(6):2782–2794CrossRefGoogle Scholar
  18. Moulton JD (2017) Making a morpholino experiment work: controls, favoring specificity, improving efficacy, storage, and dose. Methods Mol Biol 1565:17–29CrossRefGoogle Scholar
  19. Nguyen TA, Smith BRC, Tate MD, Belz GT, Barrios MH, Elgass KD, Weisman AS, Baker PJ, Preston SP, Whitehead L, Garnham A, Lundie RJ, Smyth GK, Pellegrini M, O’Keeffe M, Wicks IP, Masters SL, Hunter CP, Pang KC (2017) SIDT2 transports extracellular dsRNA into the cytoplasm for innate immune recognition. Immunity 47(3):498–509. e496CrossRefGoogle Scholar
  20. Nimjee SM, White RR, Becker RC, Sullenger BA (2017) Aptamers as therapeutics. Annu Rev Pharmacol Toxicol 57:61–79CrossRefGoogle Scholar
  21. Pasi KJ, Georgiev P, Mant T, Lissitchkov T, Creagh MD, Bevan D, Austin S, Hay CR, Hegemann I, Kazmi R, Chowdary P, Ragni MV, Soh CH, Akinc A, Partisano AM, Sorenson B, Rangarajan S (2016) Fitusiran, an investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia: updated results from a phase 1 and phase 1/2 extension study in patients with inhibitors. Blood 128(22):1397Google Scholar
  22. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336(6079):341–344CrossRefGoogle Scholar
  23. Povsic TJ, Lawrence MG, Lincoff AM, Mehran R, Rusconi CP, Zelenkofske SL, Huang Z, Sailstad J, Armstrong PW, Steg PG, Bode C, Becker RC, Alexander JH, Adkinson NF, Levinson AI, Investigators R-P (2016) Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J Allergy Clin Immunol 138(6):1712–1715CrossRefGoogle Scholar
  24. Rankin AM, Faller DV, Spanjaard RA (2008) Telomerase inhibitors and ‘T-oligo’ as cancer therapeutics: contrasting molecular mechanisms of cytotoxicity. Anti-Cancer Drugs 19(4):329–338CrossRefGoogle Scholar
  25. Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, Hall T, Troquay RP, Turner T, Visseren FL, Wijngaard P, Wright RS, Kastelein JJ (2017) Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med 376(15):1430–1440CrossRefGoogle Scholar
  26. Ricciardi AS, McNeer NA, Anandalingam KK, Saltzman WM, Glazer PM (2014) Targeted genome modification via triple helix formation. Methods Mol Biol 1176:89–106CrossRefGoogle Scholar
  27. Rossi JJ (1999) The application of ribozymes to HIV infection. Curr Opin Mol Ther 1(3):316–322PubMedGoogle Scholar
  28. Schubert S, Gul DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2003) RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res 31(20):5982–5992CrossRefGoogle Scholar
  29. Shen X, Corey DR (2018) Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 46(4):1584–1600CrossRefGoogle Scholar
  30. Shirota H, Tross D, Klinman DM (2015) CpG oligonucleotides as Cancer vaccine adjuvants. Vaccines (Basel) 3(2):390–407CrossRefGoogle Scholar
  31. Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75(1):285–288CrossRefGoogle Scholar
  32. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403CrossRefGoogle Scholar
  33. Tam YY, Chen S, Cullis PR (2013) Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5(3):498–507CrossRefGoogle Scholar
  34. Tefferi A, Al-Kali A, Begna KH, Patnaik MM, Lasho TL, Rizo A, Wan Y, Hanson CA (2016) Imetelstat therapy in refractory anemia with ring sideroblasts with or without thrombocytosis. Blood Cancer J 6:e405CrossRefGoogle Scholar
  35. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433CrossRefGoogle Scholar
  36. Wilusz JE (2018) A 360 degrees view of circular RNAs: from biogenesis to functions. Wiley Interdiscip Rev RNA 9(4):e1478CrossRefGoogle Scholar
  37. Zhou G, Latchoumanin O, Hebbard L, Duan W, Liddle C, George J, Qiao L (2018) Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev 134:107–121CrossRefGoogle Scholar
  38. Zimmermann GR, Wick CL, Shields TP, Jenison RD, Pardi A (2000) Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6(5):659–667CrossRefGoogle Scholar
  39. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R, Beerling E, Schiffelers RM, de Wit E, Berenguer J, Ellenbroek SIJ, Wurdinger T, Pegtel DM, van Rheenen J (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161(5):1046–1057CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raymond M. Schiffelers
    • 1
    Email author
  • Erik Oude Blenke
    • 2
  • Enrico Mastrobattista
    • 3
  1. 1.Laboratory Clinical Chemistry & HaematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
  3. 3.Department of PharmaceuticsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations