Advertisement

The Interval Domain

  • Patrick Schultz
  • David I. Spivak
Chapter
Part of the Progress in Computer Science and Applied Logic book series (PCS, volume 29)

Abstract

In this chapter, we will introduce the interval domain \(\mathbb {I\hspace {1.1pt} R}\), which is a topological space that represents the line of time in our work to come. The points of this space can be thought of as compact intervals [a, b] in \(\mathbb {R}\). The specialization order on points gives \(\mathbb {R}\) a non-trivial poset structure—in fact it is a domain—and as such it is far from Hausdorff.

References

  1. [Fer16]
    Ferrari, L.: Dyck algebras, interval temporal logic, and posets of intervals. SIAM J. Discrete Math. 30, 1918–1937 (2016)MathSciNetCrossRefGoogle Scholar
  2. [Gie+03]
    Gierz, G., et al.: Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications, vol. 93, pp. xxxvi+ 591. Cambridge University Press, Cambridge (2003). ISBN:0-521-80338-1. http://dx.doi.org/10.1017/CBO9780511542725
  3. [JJ82]
    Johnstone, P., Joyal, A.: Continuous categories and exponentiable toposes. J. Pure Appl. Algebra 25(3), 255–296 (1982). ISSN:0022-4049. http://dx.doi.org/10.1016/0022-4049(82)90083-4 MathSciNetCrossRefGoogle Scholar
  4. [Joh02]
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, vol. 43, pp. xxii+ 468+ 71. New York: The Clarendon Press/Oxford University Press (2002). ISBN:0-19-853425-6Google Scholar
  5. [nLabb]
    Posite. https://ncatlab.org/nlab/show/posite (visited on 06/02/2017)
  6. [Shu12]
    Shulman, M. Exact completions and small sheaves. Theory Appl. Categ. 27, 97–173 (2012). ISSN:1201-561XGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Patrick Schultz
    • 1
  • David I. Spivak
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations