Advertisement

Introduction

  • Patrick Schultz
  • David I. Spivak
Chapter
Part of the Progress in Computer Science and Applied Logic book series (PCS, volume 29)

Abstract

In this book, we provide a new mathematical formalism for proving properties about the behavior of systems. A system is a collection of interacting components, each of which may have some internal implementation that is reflected in some external behavior. This external behavior is what other neighboring systems interact with, through a shared environment. Properties of a behavior can be established over a given duration (sometimes called frame or window) of time, and we propose a mathematical language for working with these behavioral properties.

References

  1. [AFH96]
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM (JACM) 43(1), 116–146 (1996)MathSciNetCrossRefGoogle Scholar
  2. [AGV71]
    Artin, M., Grothendieck, A., Verdier, J.-L.: Theorie de Topos et Cohomologie Etale des Schemas I, II, III. Lecture Notes in Mathematics, vols. 269, 270, 305. Springer, Berlin (1971)Google Scholar
  3. [Ash13]
    Ashby, W.: Design for a Brain: The Origin of Adaptive Behaviour. Springer, Berlin (2013)zbMATHGoogle Scholar
  4. [ÅW13]
    Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation, New York (2013)Google Scholar
  5. [Awo16]
    Awodey, S.: Natural models of homotopy type theory. Math. Struct. Comput. Sci. 1–46 (2016). arXiv:1406.3219 [math.CT]Google Scholar
  6. [BF00]
    Bunge, M., Fiore, M.P.: Unique factorisation lifting functors and categories of linearly-controlled processes. Math. Struct. Comput. Sci. 10(2), 137–163 (2000)MathSciNetCrossRefGoogle Scholar
  7. [BJ81]
    Boileau, A., Joyal, A.: La logique des topos. J. Symb. Log. 46(1), 6–16 (1981). ISSN:0022-4812. http://dx.doi.org/10.2307/2273251 MathSciNetCrossRefGoogle Scholar
  8. [CH88]
    Coquand, T., Huet, G.: The calculus of constructions. Inform. Comput. 76(2–3), 95–120 (1988). ISSN:0890-5401. http://dx.doi.org/10.1016/0890-5401(88)90005-3 MathSciNetCrossRefGoogle Scholar
  9. [Fio00]
    Fiore, M.P.: Fibred models of processes: discrete, continuous, and hybrid systems. In: IFIP TCS, vol. 1872, pp. 457–473. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. [Fou77]
    Fourman, M.P.: The logic of topoi. Stud. Logic Found. Math. 90, 1053–1090 (1977)MathSciNetCrossRefGoogle Scholar
  11. [Gie+03]
    Gierz, G., et al.: Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications, vol. 93, pp. xxxvi+ 591. Cambridge University Press, Cambridge (2003). ISBN:0-521-80338-1. http://dx.doi.org/10.1017/CBO9780511542725
  12. [GKT15]
    G’alvez-Carrillo, I., Kock, J., Tonks, A.: Decomposition spaces, incidence algebras and M obius inversion I: basic theory (2015). eprint: arXiv:1512.07573Google Scholar
  13. [HS91]
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM (JACM) 38(4), 935–962 (1991)MathSciNetCrossRefGoogle Scholar
  14. [HTP03]
    Haghverdi, E., Tabuada, P., Pappas, G.: Bisimulation relations for dynamical and control systems. Electron. Notes Theor. Comput. Sci. 69, 120–136 (2003)CrossRefGoogle Scholar
  15. [JJ82]
    Johnstone, P., Joyal, A.: Continuous categories and exponentiable toposes. J. Pure Appl. Algebra 25(3), 255–296 (1982). ISSN:0022-4049. http://dx.doi.org/10.1016/0022-4049(82)90083-4 MathSciNetCrossRefGoogle Scholar
  16. [JNW96]
    Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inform. Comput. 127(2), 164–185 (1996)MathSciNetCrossRefGoogle Scholar
  17. [Joh02]
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, vol. 43, pp. xxii+ 468+ 71. New York: The Clarendon Press/Oxford University Press (2002). ISBN:0-19-853425-6Google Scholar
  18. [Law86]
    Lawvere F.W.: State categories and response functors. Dedicated to Walter Noll. Preprint (May 1986)Google Scholar
  19. [LS88]
    Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge Studies in Advanced Mathematics, vol. 7, pp. x+ 293. Reprint of the 1986 original. Cambridge University Press, Cambridge (1988). ISBN:0-521-35653-9Google Scholar
  20. [MM92]
    MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, New York (1992). ISBN:0387977104Google Scholar
  21. [MN04]
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: FORMATS/FTRTFT, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)Google Scholar
  22. [Mou+15]
    de Moura, L., et al.: The Lean theorem prover (system description). In: International Conference on Automated Deduction, pp. 378–388. Springer, Heidelberg (2015)Google Scholar
  23. [PP12]
    Picado, J., Pultr, A.: Frames and Locales. Frontiers in Mathematics. Topology Without Points, pp. xx+ 398. Birkhäuser/Springer Basel AG, Basel (2012). ISBN:978-3-0348-0153-9. http://dx.doi.org/10.1007/978-3-0348-0154-6
  24. [RU12]
    Rescher, N., Urquhart, A.: Temporal Logic, vol. 3. Springer, New York (2012)zbMATHGoogle Scholar
  25. [Shu12]
    Shulman, M. Exact completions and small sheaves. Theory Appl. Categ. 27, 97–173 (2012). ISSN:1201-561XGoogle Scholar
  26. [SVS16]
    Spivak, D.I., Vasilakopoulou, C., Schultz, P.: Dynamical Systems and Sheaves (2016). eprint: arXiv:1609.08086Google Scholar
  27. [Wil07]
    Willems, J.C.: The behavioral approach to open and interconnected systems. IEEE Control Syst. 27(6), 46–99 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Patrick Schultz
    • 1
  • David I. Spivak
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations