Design and Development of Efficient Algorithms for Iris Recognition System for Different Unconstrained Environments

  • M. R. PrasadEmail author
  • T. C. Manjunath
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 30)


One of the important concepts of identification of human beings in various sectors across the universe is the biometrics. In this paper, a brief report of the biometric recognition is being presented in a nutshell. This paper gives a brief conceptual view of the research work done on the topic titled, “Design and Development of Efficient Algorithms for Iris Recognition System for Different Unconstrained Environments” as the research topic chosen.


Biometrics Iris Authentication Recognition Identification Classifiers Simulation Matlab LabVIEW Neural network Database Image Preprocessing Segmentation Algorithm Histogram Filter Edge detection Normalization Wavelets Coding GUI Unconstraints Constraints Hardware Software Implementation 


  1. 1.
    Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(I):21–30CrossRefGoogle Scholar
  2. 2.
    Daugman J (2004) Recognizing persons by their iris patterns. In: Proceedings of Advances in Biometric Person Authentication, vol 3338, pp 5–25 CrossRefGoogle Scholar
  3. 3.
    Daugman J (2007) New methods in iris recognition. IEEE Trans Syst Man Cybern Part B-Cybern 37(5):1167–1175CrossRefGoogle Scholar
  4. 4.
    Daugman J (2003) The importance of being random: statistical principles of iris recognition. Pattern Recognit 36:279–291CrossRefGoogle Scholar
  5. 5.
    Daugman JG, Downing CJ (2001) Epigenetic randomness, complexity & singularity of human iris patterns. Proc R Soc Lond B Biol Sci 268:1737–1740Google Scholar
  6. 6.
    Zhou Z, Du YZ et al (2009) Transforming traditional iris recognition systems to work in non-ideal situations. IEEE Trans Ind Electr 56(8):3203–3213CrossRefGoogle Scholar
  7. 7.
    Daniel DM, Monica B (2010) Person authentication technique using human iris recognition.In: IEEE Conference Paper, pp 265–268. 978-1-4244-8460-7/10/$26.00©2010Google Scholar
  8. 8.
    Li P, Ma H (2012) Iris recognition in non-ideal imaging conditions. Pattern Recogn Lett 33:1–9CrossRefGoogle Scholar
  9. 9.
    Karakaya M (2016) A study of how gaze angle affects the performance of iris recognition. Elsevier Sci Direct’s Pattern Recog Lett 82:132–143CrossRefGoogle Scholar
  10. 10.
    Fancourt C, Bogoni L, Hanna K, Guo Y, Wildes R, Takahashi N, Jain U (2005) Iris recognition at a distance. In: Proceeding of international conference on audio and video based biometric person authentication, vol 3546, pp 1–13Google Scholar
  11. 11.
    Moi SH, Asmuni H, Hassan R, Othman RM (2014) A unified approach for unconstrained off-angle iris recognition. In: International symposium on biometrics & security technologies (ISBAST), pp 39–44. 978-1-4799-6444-4/14/$31.00©2014. IEEEGoogle Scholar
  12. 12.
    Kaur N, Juneja M (2014) A novel approach for iris recognition in unconstrained environment. J Emerg Technol Web Intell Acad Publishers 6(2):243–246Google Scholar
  13. 13.
    Tsai Y-H (2014) A weighted approach to unconstrained iris recognition. World Acad Sci Eng Technol Int J Comput Inf Eng 8(1):30–33. ISSN:1307-6892Google Scholar
  14. 14.
    Shin KY, Nama GP, Jeong DS, Cho DH, Kang BJ, Park KR, Kim J (2012) New iris recognition method for noisy iris images. Elsevier Sci Direct’s Pattern Recogn Lett 33:991–999CrossRefGoogle Scholar
  15. 15.
    Chen Y (2010) A high efficient biometrics approach for unconstrained iris segmentation and recognition. Ph.D. Thesis. College of Engineering and Computing, Florida International University, Greater MiamiGoogle Scholar
  16. 16.
    Roy K, Bhattacharya P et al (2010) Unideal iris segmentation using region-based active contour model. In: Campilho A, Kamel M (eds) ICIAR 2010, Part II. LNCS 6112, © Springer, Berlin, Heidelberg, Germany, pp 256–265Google Scholar
  17. 17.
    Jan F (2017) Segmentation and localization schemes for non-ideal iris biometric systems. Elsivier’s Sci Direct Jr Signal Proc 133:192–212CrossRefGoogle Scholar
  18. 18.
    Reddy N, Rattani A, Derakhshani R (2016) A robust scheme for iris segmentation in mobile environment. In: IEEE symposium on technologies for homeland security (HST). IEEE, Florida, USA. 978-1-5090-0770-7/16/$31.00©2016Google Scholar
  19. 19.
    Santoso A, Choirunnisa S, Prihasto B, Wang J-C (2016) Improving iris image segmentation in unconstrained environments using NMF-based approach. In: 2016 IEEE international conference on consumer electronics-Taiwan (ICCE-TW). IEEE, pp 27–29. 978-1-5090-2073-7/16/$31.00©2016Google Scholar
  20. 20.
    Yahiaoui M, Monfrini E, Dorizzi B (2016) Markov Chains for unsupervised segmentation of degraded NIR iris images for person recognition. Elsevier Sci Direct’s Jr Pattern Recogn Lett 82:116–123. Scholar
  21. 21.
    Sahmoud SA, Abuhaiba IS (2013) Efficient iris segmentation ethod in unconstrained environments. Elsivier’s Science Direct Jr. of Pattern Recognition, vol 46, pp 3174–3185CrossRefGoogle Scholar
  22. 22.
    Mahlouji1 M, Noruzi A (2012) Human iris segmentation for iris recognition in unconstrained environments. IJCSI Int J Comput Sci Issues 9(1), No. 3:149–155. ISSN (Online): 1694-0814Google Scholar
  23. 23.
    Proenca H (2010) An iris recognition approach through structural pattern analysis methods. Expert Syst 27(1):6–16CrossRefGoogle Scholar
  24. 24.
    Raffei AFM, Hishammuddin A, Hassan R, Othman RM (2013) Feature extraction for different distances of visible reflection iris using multiscale sparse representation of local Radon transforms. Elsivier’s Sci Direct Jr Patt Recogn 46:2622–2633Google Scholar
  25. 25.
    Haindl M, Krupička M (2015) Unsupervised detection of non-iris occlusions. Elsevier Sci Direct’s Pattern Recogn Lett 57:60–65CrossRefGoogle Scholar
  26. 26.
    Barpanda SS, Majhi B, PankajKumar S (2015) Region based feature extraction from non-cooperative iris images using triplet half-band filter bank. Elsevier Sci Direct’s Jr Opt Laser Technol 72:6–14CrossRefGoogle Scholar
  27. 27.
    Tan C-W et al (2013) Towards online iris & periocular recognition under relaxed imaging constraints. IEEE Trans Image Proc 22(10):3751–3765MathSciNetCrossRefGoogle Scholar
  28. 28.
    Santos G, Hoyle E (2012) A fusion approach to unconstrained iris recognition. Elsevier Sci Direct’s Pattern Recogn Lett 33:984–990CrossRefGoogle Scholar
  29. 29.
    Proença H, Neves JC (2016) Visible-wave length iris/periocular imaging and recognition surveillance environments. Elsevier Sci Direct’s Jr Image Vis Comput 55:22–25CrossRefGoogle Scholar
  30. 30.
    Liu B, Lam S-K, Srikanthan T, Yuan W (2011) Utilizing dark features for iris recognition in less constrained environments. In: Fourth IEEE international symposium on parallel architectures, algorithms and programming. IEEE Comp Soc, Tianjin, China, pp 110-114. ISBN 978-0-7695-4575-2/11 $26.00©2011,
  31. 31.
    Hajaria K, Gawandeb U, Golharc Y (2016) Neural network approach to iris recognition in noisy environment. Elsivier’s Sci Direct Int Conf Inf Secur Priv (ICISP2015) Procedia Comput Sci 78:675–682, 11–12., India
  32. 32.
    Liu J, Sun Z, Tan T (2014) Distance metric learning for recognizing low-resolution iris images. Elsevier Sci Direct’s Jr Neurocomp 144:484–492CrossRefGoogle Scholar
  33. 33.
    Alvarez-Betancourt Y, Garcia-Silvente M (2016) A key points—based feature extraction method for iris recognition under variable image quality conditions. Elsevier Sci Direct’s Jr Knowl-Based Syst 92:169–182CrossRefGoogle Scholar
  34. 34.
    Hu Y, Sirlantzis K, Howells G (2015) Exploiting stable and discriminative iris weight map for iris recognition under less constrained environment. In: 7th IEEE international conference on biometrics theory, applications and systems (BTAS), Arlington, VA, USA, ISBN: INSPEC Accession Number: 15668109,, 8–11 Sept 2015
  35. 35.
    Hu Y, Sirlantzis K, Howells G (2017) A novel iris weight map method for less constrained iris recognition based on bit stability and discriminability. Elsevier Sci Direct’s Jr Image Vis Comput 58:168–180CrossRefGoogle Scholar
  36. 36.
    Arya KV, Gupta A, Kumar G, Singhal P (2012) A novel approach to minimize the impact of non ideal samples in iris recognition system. In: Third IEEE international conference on computer and communication technology. IEEE Comp Soc, Allahabad, U.P., India, pp 352–356. 978-0-7695-4872-2/12 $26.00©2012 IEEE,, 23–25 Nov 2012
  37. 37.
    Perez C, Lazcano V, Estévez P, Held C (2009) Real-time template based face and iris detection on rotated faces. Int J Opto-mech 3:54–67. Taylor & Francis Group, UK., ISSN: 1559-9612 (Print) 1559-9620 (Online)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of CSEVTU RRC-BelagaviBelgaumIndia
  2. 2.Department of Computer Science and EngineeringJSS Academy of Technical Education (JSSATE)BengaluruIndia
  3. 3.Department of ECEDayananda Sagar College of EngineeringBangaloreIndia

Personalised recommendations