Advertisement

A Spectral Approach for Segmentation and Deformation Estimation in Point Cloud Using Shape Descriptors

  • Jajula Kalyani
  • Karthikeyan Vaiapury
  • Latha ParameswaranEmail author
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 30)

Abstract

In this paper, we propose a new framework for segmentation and deformation estimation in texture-less point clouds. Given a reference point cloud and a corresponding deformed point cloud, our approach first segments both the point clouds using OBB-LBS (Oriented Bounding Box-Laplace Beltrami Spectral) and estimates the semi-global dense spectral shape descriptors. These coarse descriptors identify the segments which need to be further investigated for localizing the area of deformation at a finer level.

Keywords

OBB LBS Point cloud 

References

  1. 1.
    Andra S, Radke RJ, Roysam B, Al-Kofahi O (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–307MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wiselin Jiji G, Naveena Devi R (2015) Change detection techniques—a survey. Int J Comput Sci Appl (IJCSA) 5(2)Google Scholar
  3. 3.
    Konstantinos K (2014) Recent advances on 2D and 3D change detection in urban environments from remote sensing data. In: Computational approaches for urban environments, Geotechnologies and the environment. Springer, Cham, pp 237–272Google Scholar
  4. 4.
    Núñez P, Drews P, Bandera A, Rocha R, Campos M, Dias J (2010) Change detection in 3D environments based on gaussian mixture model and robust structural matching for autonomous robotic applications. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 2633–2638Google Scholar
  5. 5.
    Vieira AW, Drews PL, Campos MF (2012) Efficient change detection in 3D environment for autonomous surveillance robots based on implicit volume. In: IEEE international conference on robotics and automation (ICRA). IEEE, pp 2999–3004Google Scholar
  6. 6.
    Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogram Remote Sens 63(1):142–154CrossRefGoogle Scholar
  7. 7.
    Vaiapury K, Aksay A, Lin X, Izquierdo E, Papadopoulos C (2011) A vision based audit method and tool that compares a systems installation on a production aircraft to the original digital mock-up. SAE Int J Aerosp 4:880–892CrossRefGoogle Scholar
  8. 8.
    Houda C, Thomas K, Pablo A, Peter R (2010) 3D change detection inside urban areas using different digital surface models. In: IAPRS, XXXVIIIGoogle Scholar
  9. 9.
    Lu W, Vinutha K, Mayank B, Jayan E, Harpreet S, Denise P, Richard S (2014) Automatic 3D change detection for glaucoma diagnosis. In: WACVGoogle Scholar
  10. 10.
    Karthika R, Parameswaran L (2016) Study of Gabor wavelet for face recognition invariant to pose and orientation. In: Proceedings of the international conference on soft computing systems, Volume 397, 2016, of the series Advances in intelligent systems and computing, pp 501–509Google Scholar
  11. 11.
    Parameswaran L, Anbumani K (2008) Content-based watermarking for image authentication using independent component analysis. Informatica J 32:299–306Google Scholar
  12. 12.
    Chen L, Hoang D, Lin H, Nguyen T (2016) Innovative methodology for multi-view point cloud registration in robotic 3D object scanning and reconstruction. Appl Sci 6:132CrossRefGoogle Scholar
  13. 13.
    Boscaini D, Masci J, Rodolà E, Bronstein MM, Cremers D (2016) Anisotropic diffusion descriptors. EUROGRAPHICS 35(2)CrossRefGoogle Scholar
  14. 14.
    Levy B (2006) Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: Shape modeling and applications, international conference 2006, p 13Google Scholar
  15. 15.
    Kokkinos I, Bronstein MM (2010) Scale-invariant heat kernel signatures for non-rigid shape recognition. In: CVPR 2010Google Scholar
  16. 16.
    Arteaga RJ, Ruuth SJ (2015) Laplace-Beltrami spectra for shape comparison of surfaces in 3D using the closest point method. In: ICIP 2015Google Scholar
  17. 17.
    Buendia AE, Martinez LH, Vega RM, Torres JM, Crisóstomo ON (2015) Skeletons of 3D surfaces based on the Laplace-Beltrami operator eigen functions. Appl Math 6:414–420CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jajula Kalyani
    • 1
    • 2
  • Karthikeyan Vaiapury
    • 1
  • Latha Parameswaran
    • 2
    Email author
  1. 1.TCS Innovation Labs, Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia
  2. 2.Department of Computer Science and Engineering, Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations