Advertisement

Environmental Sustainability Building Criteria for an Open Classification System

  • Nicolas FrancartEmail author
  • Eje Sandberg
  • Martin Erlandsson
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Existing classification systems linked to the environmental performance of buildings provide limited added value for practitioners. A survey among Swedish construction entrepreneurs showed that there is a real demand for better formulated criteria and clearer guidance. At the same time, critical investigation of requirements based on fixed average values for primary energy factors (such as in the EU Environmental Performance of Buildings Directive) shows that they are insufficient to provide guidance towards environmental sustainability building practices. They fail to take into account a number of methodological issues, including seasonal and hourly variability of energy supply and demand, and the future evolution of energy mixes. This is illustrated in the case of Sweden. The outline of an Open Classification System, currently under development, is then presented. This system focuses on methodological transparency and validity, as well as ease of use for practitioners. It addresses specifically issues where other existing systems were found to be lacking, and its methodology will be assessed to ensure that it provides optimal guidance towards environmentally sustainable practices. The system is based on three criteria: the energy resource index and global warming potential, calculated with attributional and consequential life cycle approaches, and a heat loss factor to assess the building’s energy performance independently from the supply side.

Keywords

Sustainable construction Building certification Heat losses Primary energy Global warming potential 

Notes

Acknowledgements

Björn Berggren, from Skanska AB, was responsible for carrying out the initial survey. His help and comments on this article are gratefully acknowledged.

References

  1. 1.
    Swedish Center for Zero-Energy Houses (2012) Kravspecifikation för nollenergihus, passivhus och minienergihus - BostäderGoogle Scholar
  2. 2.
    Swedish Green Building Center (2017) Miljöbyggnad - Bedömningskriterier för nyproduktion 3.0Google Scholar
  3. 3.
    European Commission (2016) May infringements’ package : key decisions. http://europa.eu/rapid/press-release_MEMO-16-1823_en.htm. Accessed 17 Aug 2017
  4. 4.
    BRE Global Limited (2017) BREEAM International New Construction 2016Google Scholar
  5. 5.
    United States Green Building Council (2014) LEED v4 for Building Design and Construction (Updated April 14, 2017)Google Scholar
  6. 6.
    European Standards (2011) EN 15978:2011 Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method.  https://doi.org/10.3403/30204399
  7. 7.
    European Standards (2012) EN 15804:2012 Sustainability of construction works, Environmental product declarations, Core rules for the product category of construction productsGoogle Scholar
  8. 8.
    European Commission – Joint Research Centre – Institute for Environment and Sustainability (2010) International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment – Detailed guidance. Constraints.  https://doi.org/10.2788/38479
  9. 9.
    European Parliament, European Council (2010) Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off J Eur Union. doi: https://doi.org/10.3000/17252555.l_2010.153.eng
  10. 10.
    Boverket, Regelsamling för byggande (BBR, Boverket, Stockholm, 2015)Google Scholar
  11. 11.
    D. Stoerring, S. Horl, European Parliament fact sheet: internal energy market (2017). http://www.europarl.europa.eu/atyourservice/en/displayFtu.html?ftuId=FTU_5.7.2.html. Accessed 18 Aug 2017
  12. 12.
    International Energy Agency (2016) Nordic energy technology perspectives 2016.  https://doi.org/10.1787/9789264257665-en
  13. 13.
    J. Gode, F. Martinsson, L. Hagberg et al., Miljöfaktaboken 2011 Uppskattade emissionsfaktorer för bränslen, el, värme och transporter (in Swedish) (Värmeforsk Service AB, Stockholm, 2011)Google Scholar
  14. 14.
    World Resources Institute, World Business Council for Sustainable Development (2007) Guidelines for Quantifying GHG Reductions from Grid-Connected Electricity ProjectsGoogle Scholar
  15. 15.
    B. Peuportier, C. Roux , Moving towards CLCA to model electricity consumption in buildnings (2015)Google Scholar
  16. 16.
    A.D. Hawkes, Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy 38, 5977–5987 (2010).  https://doi.org/10.1016/j.enpol.2010.05.053CrossRefGoogle Scholar
  17. 17.
    C. Roux, B. Peuportier, Considering temporal variation in the life cycle assessment of buildings, application to electricity consumption and production. World suistainable Build 2014, 1–9 (2014)Google Scholar
  18. 18.
    J. Gode, A. Lätt, T. Ekvall, et al., Miljövärdering av energilösningar i byggnader - metod för konsekvensanalys. Stockholm (2015)Google Scholar
  19. 19.
    C. Roux, P. Schalbart, B. Peuportier, Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house. J. Clean. Prod. 113, 532–540 (2016).  https://doi.org/10.1016/j.jclepro.2015.11.052CrossRefGoogle Scholar
  20. 20.
    M. Erlandsson, Hållbar användning av naturresurser - andelen nedströms klimatpåverkan för byggnader (2014)Google Scholar
  21. 21.
    C.K. Anand, B. Amor, Recent developments, future challenges and new research directions in LCA of buildings: a critical review. Renew. Sustain. Energy Rev. 67, 408–416 (2017).  https://doi.org/10.1016/j.rser.2016.09.058CrossRefGoogle Scholar
  22. 22.
    T. Ibn-Mohammed, R. Greenough, S. Taylor et al., Operational vs. embodied emissions in buildings—A review of current trends. Energy Build. 66, 232–245 (2013).  https://doi.org/10.1016/j.enbuild.2013.07.026CrossRefGoogle Scholar
  23. 23.
    C. Liljenström, T. Malmqvist, M. Erlandsson, et al., Byggandets klimatpåverkan - Livscykelberäkning av klimatpåverkan och energianvändning för ett nyproducerat energieffektivt flerbostadshus i betong. Stockholm (2015)Google Scholar
  24. 24.
    E. Seinre, J. Kurnitski, H. Voll, Quantification of environmental and economic impacts for main categories of building labeling schemes. Energy Build. 70, 145–158 (2014).  https://doi.org/10.1016/j.enbuild.2013.11.048CrossRefGoogle Scholar
  25. 25.
    N. Brown, T. Malmqvist, H. Wintzell, Value creation for tenants in environmentally certified buildings. Build Res Inf 1–16 (2016).  https://doi.org/10.1080/09613218.2016.1207137

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolas Francart
    • 1
    Email author
  • Eje Sandberg
    • 2
  • Martin Erlandsson
    • 1
    • 3
  1. 1.KTH Royal Institute of TechnologyStockholmSweden
  2. 2.ATON Teknikkonsult ABStockholmSweden
  3. 3.IVL Swedish Environmental InstituteStockholmSweden

Personalised recommendations