Advertisement

Normalisation of Measured Energy Use in Buildings—Need for a Review of the Swedish Regulations

  • Björn Berggren
  • Maria Wall
  • Henrik Davidsson
  • Niko Gentile
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Normalisation of measured energy use in buildings is important in order to verify their performance in user phase. Two methods for normalisation have been presented in Sweden, static and dynamic normalisation. The static normalisation considers deviating hot water use, indoor temperature, internal loads and external climate. The dynamic normalisation is based on repeated simulation, meaning that the initial simulation, carried out during the design phase, is repeated with updated conditions regarding actual use of the building and exterior climate. The ratio between the first and second simulation is used as a factor for normalisation. A pre-study has been initiated in Sweden to enable further development of the two methods. This paper present the two methods, the initiated pre-study, and some early findings. The early findings show that there is need for further development of the methods presented.

Keywords

Normalisation Energy use Swedish regulations 

References

  1. 1.
    A.C. Menezes, A. Cripps, D. Bouchlaghem, R. Buswell, Predicted vs. actual energy performance of non-domestic buildings: using post-occupancy evaluation data to reduce the performance gap. Appl. Energy 97, 355–364 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Demanuele, T. Tweddell, M. Davies, in Bridging the Gap Between Predicted and Actual Energy Performance in Schools. World Renewable Energy Congress XI (Abu Dhabi, 2010)Google Scholar
  3. 3.
    B. Bordass, R. Cohen, J. Field, in Energy Performance of Non-domestic Buildings—Closing the Credibility Gap. International Conference on Improving Energy Efficiency in Commercial Buildings (Frankfurt, 2004)Google Scholar
  4. 4.
    Carbon Trust, Closing the gap—Lessons learned on realising the potential of low carbon building design, https://www.carbontrust.com/media/81361/ctg047-closing-the-gap-low-carbon-building-design.pdf. Last accessed 31 Aug 2017
  5. 5.
    J. Rekstad, M. Meir, E. Murtnes, A. Dursun, A comparison of the energy consumption in two passive houses, one with a solar heating system and one with an air–water heat pump. Energy Build. 96, 149–161 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Mahapatra, S. Olsson, Energy performance of two multi-story wood-frame passive houses in Sweden. Buildings 5(4), 1207 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Norbäck, Å. Wahlström, Sammanställning av lågenergibyggnader i Sverige (In Swedish) (2016)Google Scholar
  8. 8.
    U. Janson, Passive houses in Sweden, From design to evaluation of four demonstration projects, Doctoral thesis, Lund University (2010)Google Scholar
  9. 9.
    D. Majcen, L. Itard, H. Visscher, Actual and theoretical gas consumption in Dutch dwellings: what causes the differences? Energy Policy 61, 460–471 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Majcen, L.C.M. Itard, H. Visscher, Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: discrepancies and policy implications. Energy Policy 54, 125–136 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Branco, B. Lachal, P. Gallinelli, W. Weber, Predicted versus observed heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data. Energy Build. 36(6), 543–555 (2004)CrossRefGoogle Scholar
  12. 12.
    O. Guerra-Santin, L. Itard, The effect of energy performance regulations on energy consumption. Energy Effi. 5(3), 269–282 (2012)CrossRefGoogle Scholar
  13. 13.
    P. de Wilde, The gap between predicted and measured energy performance of buildings: a framework for investigation. Autom. Constr. 41, 40–49 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Wall, Energy-efficient terrace houses in Sweden: simulations and measurements. Energy Build. 38(6), 627–634 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Kampelis, K. Gobakis, V. Vagias, D. Kolokotsa, L. Standardi, D. Isidori, C. Cristalli, F.M. Montagnino, F. Paredes, P. Muratore, L. Venezia, Μ.K. Dracou, A. Montenon, A. Pyrgou, T. Karlessi, M. Santamouris, Evaluation of the Performance Gap in Industrial, Residential & Tertiary Near-Zero Energy Buildings, Energy and BuildingsGoogle Scholar
  16. 16.
    P. Isaksson, P. Carling, Normalisering av byggnadens energianvändning (In Swedish), Svebyprogrammet, Projektrapport 2012-01-30 (2012)Google Scholar
  17. 17.
    Boverket, Boverkets föreskrifter om ändring av verkets föreskrifter och allmänna råd (2016:12) om fastställande av byggnadens energianvändning vid normalt brukande och ett normalår BFS 2017:6 BEN 2, Boverket, Karlskrona (2017)Google Scholar
  18. 18.
    SBUF, Svenska Byggbranschens Utvecklingsfond, https://www.sbuf.se. Last accessed 31 Aug 2017
  19. 19.
    Boverket, Boverket´s building regulations—mandatory provisions and general recommendations, BBR 23 BFS 2016:6, Boverket, Karlskrona (2016)Google Scholar
  20. 20.
  21. 21.
    SMHI, Sveriges meteorologiska och hydrologiska institut, https://www.smhi.se/en. Last accessed 31 Aug 2017

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Björn Berggren
    • 1
    • 2
  • Maria Wall
    • 1
  • Henrik Davidsson
    • 1
  • Niko Gentile
    • 1
  1. 1.Department of Architecture and Built Environment, Division of Energy and Building DesignLund UniversityLundSweden
  2. 2.Skanska Sverige AB, TeknikStockholmSweden

Personalised recommendations