The Challenge of Energy Efficiency in Kiruna’s Heritage Buildings

  • Andrea LucianiEmail author
  • Sofia Lidelöw
  • Shimantika Bhattacharjee
  • Tomas Örn
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The town of Kiruna, founded in 1900 in the northernmost part of Sweden, is nowadays in the middle of an impressive urban transformation: due to the impacts of mining activities a large part of the city center has to be moved or rebuilt. Among the buildings to be moved and kept in use are some of the so-called ‘Bläckhorn’ timber houses, designed by Gustaf Wickman in the early 20th century as residential units for the workers of the mining company LKAB and part of the original core of Kiruna. This has raised several questions on the sustainability of renovating historic buildings in a sub-arctic climate. In order to explore the challenge of increasing the energy efficiency of the Bläckhorn houses, data on their constructional and historical features as well as their thermal and energy performance have been collected. The paper addresses the following issues. Historic buildings are often blamed for their poor energy efficiency without considering their usually high constructional quality. What do we know about the real performances of these buildings? Energy retrofits in non-monumental and inhabited historic buildings are often guided by practical and operational needs rather than by their heritage significance. Can a value-based approach affect the improvement of energy efficiency? In a subarctic climate, even simple interventions can help to save a considerable amount of energy in historic buildings. To which extent the energy performances of the Bläckhorn houses could be increased without affecting their heritage values?


Energy efficiency Historic buildings Cultural heritage values 



Funding for this study were provided by the Hjalmar Lundbohm Research Centre (HLRC), the Swedish Energy Agency through Spara och Bevara (project Smart energieffektivisering av kulturhistoriska byggnader i kallt klimat) and Interreg Nord programme (project EEBAK - EnergiEffektiva Byggander I Arktiska Kommuner).


  1. 1.
    E. Avrami, R. Mason, M. de la Torre (eds.), Values and Heritage Conservation, Research Report (The Getty Conservation Institute, Los Angeles, CA, 2000)Google Scholar
  2. 2.
    F. Bedoire, Gustaf Wickman som sjukhusarkitekt: En studie i det tidiga 1900-talets vårdbyggande (Fritzes hovbokh, Stockholm, 1974)Google Scholar
  3. 3.
    B. Berggren, M. Wall, Moisture conditions in exterior walls for net zero energy buildings in cold climate considering future climate scenario, in Proceedings from 7th International Cold Climate HVAC Conference, Calgary, (2012) p. 8Google Scholar
  4. 4.
    BFS 2011:6 Boverkets byggregler, BFS 2011:6 med ändringar t.o.m. BFS 2017:5, BBR 25. Boverket, KarlskronaGoogle Scholar
  5. 5.
    C. Björk, L. Nordling, L. Reppen, Så byggdes villan: svensk villaarkitektur från 1890 till 2010 (Formas, Stockholm, 2009)Google Scholar
  6. 6.
    Boverket, Teknisk status i den svenska bebyggelsen-resultat från projektet BETSI (Boverket, Karlskrona, 2010)Google Scholar
  7. 7.
    L. Brunnström, Kiruna - ett samhällsbygge i sekelskiftets Sverige (Umeå universitet, Umeå, 1981)Google Scholar
  8. 8.
    EN 16883:2017, in Conservation of Cultural Heritage—Guidelines for Improving the Energy Performance of Historic Buildings (European Committee for Standardization, Brussels, 2017)Google Scholar
  9. 9.
    ICOMOS, The Venice Charter: International Charter for Conservation and Restoration of Monuments and Sites (International Council on Monuments and Sites (ICOMOS), Paris, 1964)Google Scholar
  10. 10.
    ISO 13370:2007, Thermal Performance of Buildings—Heat Transfer Via the Ground Calculation Methods (International Organization for Standardization, Geneva, 2007)Google Scholar
  11. 11.
    ISO 13789:2017, Thermal Performance of Buildings—Transmission and Ventilation Heat Transfer Coefficients Calculation Methods (International Organization for Standardization, Geneva, 2017)Google Scholar
  12. 12.
    ISO 6946:2017, Building Components and Building Elements—Thermal Resistance and Thermal Resistance Calculation Methods (International Organization for Standardization, Geneva, 2017)Google Scholar
  13. 13.
    T. Johansson, M. Vesterlund, T. Olofsson, J. Dahl, Energy performance certificates and 3-dimensional city models as a means to reach national targets—A case study of the city of Kiruna. Energ Convers. Manage. 116, 42–57 (2016). Scholar
  14. 14.
    P. Joseph, Bedömning av kulturvärden för byggnader inom Gruvstadsparken (Kiruna kommun, Kiruna, 2010)Google Scholar
  15. 15.
    Kiruna kommun, Beslut om bygglov. Bygglov uppförande flerbostadshus byggnad B52, D 2016-000376. Kiruna kommun, Kiruna (2016a)Google Scholar
  16. 16.
    Kiruna kommun, Beslut om bygglov. Bygglov uppförande flerbostadshus byggnad B53, D 2016-000378. Kiruna kommun, Kiruna (2016b)Google Scholar
  17. 17.
    A. Krus, Kulturarv-funktion-ekonomi: Tre perspektiv på byggnader och deras värden, Licentiatuppsats (Göteborg, Chalmers tekniska högskola, 2006)Google Scholar
  18. 18.
    M. Legnér, A. Luciani, The historical indoor climate. A long-term approach to conservation environments within heritage buildings, in Online Proceedings of the Conference BH 201, ed. by M. Boriani, R. Gabaglio, D. Gulotta (Politecnico di Milano, Milan, 2013), pp. 1321–1328Google Scholar
  19. 19.
    D. Lowenthal, Stewarding the past in a perplexing present, in Values and Heritage Conservation, Research Report, ed. by E. Avrami, R. Mason, M. de la Torre (The Getty Conservation Institute, Los Angeles, CA, 2000), pp. 18–25Google Scholar
  20. 20.
    S. Muñoz Viñas, Contemporary Theory of Conservation (Routledge, London, New York, 2005)Google Scholar
  21. 21.
    G. Nordström, S. Lidelöw, H. Johnsson, Comparing energy signature analysis to calculated U-values in wooden houses in cold climate, in Eco-Architecture IV (WIT Press, Southampton, 2012), pp 1–9Google Scholar
  22. 22.
    V. Pracchi, Historic buildings and energy efficiency. Historic Environ. Policy 5(2), 210–225 (2014)CrossRefGoogle Scholar
  23. 23.
    RAÄ (2008) Det byggda kulturarvet i framtidens Kiruna. Sammanfattning av seminariet i Kiruna, 18–19 September 2008. Riksantikvarieämbetet, StockholmGoogle Scholar
  24. 24.
    RAÄ, Reviderad riksintressebeskrivning för Kiruna-Kirunavaara [BD 33] (Kiruna stad, Jukkasjärvi sn) 2010-05-19, dnr 331-00556-2009 (Riksantikvarieämbetet, Stockholm, 2018)Google Scholar
  25. 25.
    Regeringen, Möjlighet till undantag från de tekniska egenskapskraven på byggnadsverk. Lagrådsremiss (2007)Google Scholar
  26. 26.
    SFS 2010:900 Plan- och bygglagGoogle Scholar
  27. 27.
    J.-U. Sjögren, S. Andersson, T. Olofsson, Sensitivity of the total heat loss coefficient determined by the energy signature approach to different time periods and gained energy. Energy Build. 41, 801–808 (2009). Scholar
  28. 28.
    J. Sjöholm, Heritagisation, Re-Heritagisation and De-Heritagisation of Built Environments. The Urban Transformation of Kiruna, Sweden Doctoral Dissertation, Luleå University of Technology, Luleå (2016)Google Scholar
  29. 29.
    K. Yliniemi, A device and a method for measurement of energy for heating tap water separated from the building’s heating energy-usage. Patent no. PCT/SE2006/001250, World Intellectual Property Organization, Geneva (2007)Google Scholar
  30. 30.
    K. Yliniemi, J. Delsing, J. van Deventer, Experimental verification of a method for estimating energy for domestic hot water production in a 2-stage district heating substation. Energy Build. 41(2), 169–174 (2009). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Environmental and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden

Personalised recommendations