Building Refurbishment from a Life Cycle Perspective—An Environmental Return on Investment Approach

  • Helena NydahlEmail author
  • Staffan Andersson
  • Anders P. Åstrand
  • Thomas Olofsson
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


This study applies an environmental return on investment approach to evaluate building refurbishment from a life cycle perspective. The used methodology focuses on the changes introduced by refurbishment, i.e. added embodied environmental impact and changed operational environmental impact, from a life cycle perspective with the technical service life of the refurbishment measure as a time limit. The methodology is applied to a case study in Umeå, located 455 km south of the Arctic Circle, with a unique set of data on reduction in operational energy. The result show the environmental impact, energy (Joule) and GWP (CO2-eq), in terms of environmental return on investment of the case study refurbishment measures. The case study shows that the methodology is a useable approach to compare refurbishment measures from a life cycle perspective. It is possible to use the methodology as a tool at an early stage in planning of sustainable building refurbishment from a life cycle perspective. For a widespread use of a tool based on an environmental return on investment approach, further research on guidelines for sustainable environmental return on investment values is required.


Building refurbishment Life cycle assessment (LCA) Technical service life 



We gratefully acknowledge the financial support for this project from AB Bostaden and the Industrial Doctoral School at Umeå University.


  1. 1.
    A. Vilches, A. Garcia-Martinez, B. Sanchez-Montañes, Life cycle assessment (LCA) of building refurbishment: a literature review. Energy Build. 135, 286–301 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Buzek, D. López Garrido, Directive 2010/31/EU of the European parliament and of the council of 19 on the energy performance of buildings. Official J. Eur. Union 3, 13–35 (2010)Google Scholar
  3. 3.
    C.K. Anand, B. Amor, Recent developments, future challenges and new research directions in LCA of buildings: a critical review. Renew. Sustain. Energy Rev. 67, 408–416 (2017)CrossRefGoogle Scholar
  4. 4.
    J.D. Silvestre, A. Silva, J. De Brito, Uncertainty modelling of service life and environmental performance to reduce risk in building design decisions. J. Civ. Eng. Manage. 21, 308–322 (2015)CrossRefGoogle Scholar
  5. 5.
    Boverket (ed.), Byggnaders klimatpåverkan utifrån ett livscykelperspektiv (The Swedish National Board of Housing, Building and Planning, Sweden, 2015), p. 95Google Scholar
  6. 6.
    K.P. Bhandari, J.M. Collier, R.J. Ellingson, D.S. Apul, Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 47, 133–141 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Vesterberg, S. Andersson, R. Söderström, Validering lärande och utveckling av hållbarhetsmål i Hållbara Ålidhem (Slutrapport, Karlskrona, 2017)Google Scholar
  8. 8.
    ISO, Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method (Swedish standards institute, 2011), p. 72Google Scholar
  9. 9.
    C. Hall, S. Balogh, D. Murphy, What is the minimum EROI that a sustainable society must have? Energies 2, 25–47 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Engström, J. Gode, U. Axelsson, Vägledning till metodval vid beräkning av påverkan från förändrad energianvändning på de svenska miljömålen. Framtagen med stöd av Miljömålsrådet, Energimyndigheten och Naturvårdsverket. (Stockholm, 2009), pp. 76Google Scholar
  11. 11.
    F. Martinsson, J. Gode, J. Arnell, J. Höglund, Emissionsfaktor för nordisk elmix (IVL Swedish Environmental Research Institute, Stockholm, 2012), p. 35Google Scholar
  12. 12.
    U.Y.A. Tettey, A. Dodoo, L. Gustavsson, Effects of different insulation materials on primary energy and CO2 emission of a multi-storey residential building. Energy Build. 82, 369–377 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Nyman, C.J. Simonson, Life-cycle assessment (LCA) of air-handling units with and without air-to-air energy exchangers. ASHRAE Trans. 110, 399–409 (2004)Google Scholar
  14. 14.
    K. Switala-Elmhurst, in Life Cycle Assessment of Residential Windows: Analyzing the Environmental Impact of Window Restoration Versus Window Replacement, ed. by P. Udo-Inyang, B. Flamm, M. Henry, S. Neretina, S. Serrano, B. Van Aken, (ProQuest Dissertations Publishing, Michigan, 2014)Google Scholar
  15. 15.
    M.J. de Wild-Scholten, Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells 119, 296–305 (2013)CrossRefGoogle Scholar
  16. 16.
    J.L. Sohn, P.P. Kalbar, G.T. Banta, M. Birkved, Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application. J. Clean. Prod. 142, 3243–3253 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Liljenström, T. Malmqvist, M. Erlandsson, J. Fredén, I. Adolfsson, G. Larsson, Byggproduktionens miljöpåverkan i förhållande till driften (KTH Arkitektur och samhällsbyggnad, Sweden, 2014), p. 39Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Helena Nydahl
    • 1
    Email author
  • Staffan Andersson
    • 1
  • Anders P. Åstrand
    • 1
  • Thomas Olofsson
    • 1
  1. 1.Umeå UniversityUmeåSweden

Personalised recommendations