Advertisement

Interaction of Particles and Pathogens with Biological Membranes

  • Thorsten AuthEmail author
  • Sabyasachi Dasgupta
  • Gerhard Gompper
Chapter

Abstract

Biological membranes are both barriers and communication interfaces of cells. Transport across membranes is therefore essential for life. It encompasses both endocytotic and exocytotic processes important for cell function, but also the invasion of cells by parasites and viruses, and targeted drug delivery. Whereas interactions on the molecular scale are important for particles with sizes comparable with the thickness of the membrane, the mechanical properties of the entire membrane determine its interaction with larger particles. We focus here on large particles and parasites and discuss wrapping of single particles by homogeneous and complex membranes. Both solid particles with various shapes as well as soft particles are considered. Membrane-mediated interactions of many particles lead to aggregation and tubulation. Finally, active biological mechanisms are shown to support the invasion of parasites, such as the malaria parasite, and to drive phagocytosis.

Keywords

Nanoparticles Helfrich Hamiltonian Endocytosis Pathogens Malaria Phagocytosis 

Notes

Acknowledgements

Our research on the interaction of particles with biological membranes has been supported by the EU FP7 NMP collaborative project PreNanoTox (309666).

References

  1. 1.
    Abbena E, Salamon S, Gray A (2006) Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  2. 2.
    Agudo-Canalejo J, Lipowsky R (2015) Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS Nano 9(4):3704–3720PubMedCrossRefGoogle Scholar
  3. 3.
    Atilgan E, Sun SX (2007) Shape transitions in lipid membranes and protein mediated vesicle fusion and fission. J Chem Phys 126(9):095102PubMedCrossRefGoogle Scholar
  4. 4.
    Auth T, Gompper G (2009) Budding and vesiculation induced by conical membrane inclusions. Phys Rev E 80(3):031901CrossRefGoogle Scholar
  5. 5.
    Auth T, Gov NS (2009) Diffusion in a fluid membrane with a flexible cortical cytoskeleton. Biophys J 96(3):818–830PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Auth T, Safran SA, Gov NS (2007) Fluctuations of coupled fluid and solid membranes with application to red blood cells. Phys Rev E 76(5):051910CrossRefGoogle Scholar
  7. 7.
    Bahrami AH, Lipowsky R, Weikl TR (2012) Tubulation and aggregation of spherical nanoparticles adsorbed on vesicles. Phys Rev Lett 109(18):188102PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bahrami AH et al (2014) Wrapping of nanoparticles by membranes. Adv Colloid Interf Sci 208:214–224CrossRefGoogle Scholar
  9. 9.
    Bao G, Bao XR (2005) Shedding light on the dynamics of endocytosis and viral budding. Proc Natl Acad Sci USA 102(29):9997–9998PubMedCrossRefGoogle Scholar
  10. 10.
    Barnoud J, Rossi G, Monticelli L (2014) Lipid membranes as solvents for carbon nanoparticles. Phys Rev Lett 112(6):068102PubMedCrossRefGoogle Scholar
  11. 11.
    Barua S et al (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 110(9):3270–3275PubMedCrossRefGoogle Scholar
  12. 12.
    Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425(6960):821–824CrossRefGoogle Scholar
  13. 13.
    Beningo KA, Wang Y-l (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115(4):849–856PubMedGoogle Scholar
  14. 14.
    Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165CrossRefGoogle Scholar
  15. 15.
    Brewster R, Pincus PA, Safran SA (2009) Hybrid lipids as a biological surface-active component. Biophys J 97(4):1087–1094PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Canton I, Battaglia G (2012) Endocytosis at the nanoscale. Chem Soc Rev 41(7):2718–2739PubMedCrossRefGoogle Scholar
  17. 17.
    Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934PubMedCrossRefGoogle Scholar
  18. 18.
    Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro-and nanoparticles of complex shapes. Proc Natl Acad Sci USA 104(29):11901–11904PubMedCrossRefGoogle Scholar
  19. 19.
    Chaudhuri A, Battaglia G, Golestanian R (2011) The effect of interactions on the cellular uptake of nanoparticles. Phys Biol 8(4):046002PubMedCrossRefGoogle Scholar
  20. 20.
    Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotech 6(6):385–391CrossRefGoogle Scholar
  23. 23.
    Churchman AH et al (2013) Serum albumin enhances the membrane activity of ZnO nanoparticles. Chem Commun 49(39):4172–4174CrossRefGoogle Scholar
  24. 24.
    Copolovici DM et al (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3):1972–1994PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124(4):755–766PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Crick AJ et al (2014) Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys J 107(4):846–853PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dan N et al (1994) Membrane-induced interactions between inclusions. J Phys II (France) 4(10):1713–1725CrossRefGoogle Scholar
  28. 28.
    Dasgupta S, Auth T, Gompper G (2013) Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matter 9(22):5473–5482CrossRefGoogle Scholar
  29. 29.
    Dasgupta S, Auth T, Gompper G (2014) Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett 14(2):687–693PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Dasgupta S et al (2014) Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys J 107(1):43–54PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dasgupta S, Auth T, Gompper G (2015) Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matter 11:7441–7444CrossRefGoogle Scholar
  32. 32.
    Dasgupta S, Auth T, Gompper G (2017) Nano-and microparticles at fluid and biological interfaces. J Phys Condens Matter 29:373003PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–5314PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28(18):2915–2922PubMedCrossRefGoogle Scholar
  35. 35.
    Decuzzi P, Ferrari M (2008) The receptor-mediated endocytosis of nonspherical particles. Biophys J 94(10):3790–3797PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Decuzzi P et al (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26(1):235–243PubMedCrossRefGoogle Scholar
  37. 37.
    Deserno M (2004) Elastic deformation of a fluid membrane upon colloid binding. Phys Rev E 69(3):031903CrossRefGoogle Scholar
  38. 38.
    Deserno M (2004) When do fluid membranes engulf sticky colloids? J Phys Condens Matter 16(22):S2061CrossRefGoogle Scholar
  39. 39.
    Deserno M, Bickel T (2003) Wrapping of a spherical colloid by a fluid membrane. Europhys Lett 62(5):767CrossRefGoogle Scholar
  40. 40.
    Deserno M, Gelbart WM (2002) Adhesion and wrapping in colloid-vesicle complexes. J Phys Chem B 106(21):5543–5552CrossRefGoogle Scholar
  41. 41.
    Ding H-m, Tian W-de, Ma Y-q (2012) Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 6(2):1230–1238CrossRefGoogle Scholar
  42. 42.
    Ehrig J, Petrov EP, Schwille P (2011) Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes. Biophys J 100(1):80–89PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ewers H et al (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12(1):11–18CrossRefGoogle Scholar
  44. 44.
    Fish et al MB (2015) Emergence and utility of nonspherical particles in biomedicine. Ind Eng Chem Res 54(16):4043–4059Google Scholar
  45. 45.
    Florez L et al (2012) How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 8(14):2222–2230PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Fošnarič M et al (2009) Monte carlo simulations of complex formation between a mixed fluid vesicle and a charged colloid. J Chem Phys 131(10):105103PubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gao Y, Yu Y (2013) How half-coated janus particles enter cells. J Am Chem Soc 135(51):19091–19094PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ge P et al (2010) Cryo-em model of the bullet-shaped vesicular stomatitis virus. Science 327(5966):689–693PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gompper G, Kroll DM (2004) Triangulated surface models of fluctuating membranes. In: Nelson DR, Piran T, Weinberg S (eds) Statistical mechanics of membranes and surfaces. World Scientific, SingaporeGoogle Scholar
  51. 51.
    Gózdz WT (2007) Deformations of lipid vesicles induced by attached spherical particles. Langmuir 23(10):5665–5669PubMedCrossRefGoogle Scholar
  52. 52.
    Hamada T et al (2012) Size-dependent partitioning of nano/microparticles mediated by membrane lateral heterogeneity. J Am Chem Soc 134(34):13990–13996PubMedCrossRefGoogle Scholar
  53. 53.
    Hansen JC et al (1997) Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys J 72(5):2369PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hashemi SM, Sens P, Mohammad-Rafiee F (2014) Regulation of the membrane wrapping transition of a cylindrical target by cytoskeleton adhesion. J R Soc Interface 11(100):20140769PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28(11–12):693–703PubMedCrossRefGoogle Scholar
  56. 56.
    Herant M, Heinrich V, Dembo M (2006) Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci 119(9):1903–1913PubMedCrossRefGoogle Scholar
  57. 57.
    Herant M et al (2011) Protrusive push versus enveloping embrace: computational model of phagocytosis predicts key regulatory role of cytoskeletal membrane anchors. PLoS Comput Biol 7(1):e1001068PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hoffmann I et al (2014) Softening of phospholipid membranes by the adhesion of silica nanoparticles–as seen by neutron spin-echo (NSE). Nanoscale 6(12):6945–6952PubMedCrossRefGoogle Scholar
  59. 59.
    Huang C et al (2013) Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett 13(9):4546–4550PubMedCrossRefGoogle Scholar
  60. 60.
    Hurley et al JH (2010) Membrane budding. Cell 143(6):875–887PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ivask A et al (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLOS One 9(7):e102108PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jaskiewicz K et al (2012) Incorporation of nanoparticles into polymersomes: size and concentration effects. ACS Nano 6(8):7254–7262PubMedCrossRefGoogle Scholar
  63. 63.
    Jaskiewicz K et al (2012) Probing bioinspired transport of nanoparticles into polymersomes. Angew Chem 124(19):4691–4695CrossRefGoogle Scholar
  64. 64.
    Killian JA (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta Rev Biomembr 1376(3):401–416CrossRefGoogle Scholar
  65. 65.
    Koltover I, Raedler JO, Safinya CR (1999) Membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles. Phys Rev Lett 82(9):1991CrossRefGoogle Scholar
  66. 66.
    Le Bihan O et al (2009) Cryo-electron tomography of nanoparticle transmigration into liposome. J Struct Biol 168(3):419–425PubMedCrossRefGoogle Scholar
  67. 67.
    Lesniak A et al (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857PubMedCrossRefGoogle Scholar
  68. 68.
    Li S, Malmstadt N (2013) Deformation and poration of lipid bilayer membranes by cationic nanoparticles. Soft Matter 9(20):4969–4976CrossRefGoogle Scholar
  69. 69.
    Lin J et al (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9):5421–5429PubMedCrossRefGoogle Scholar
  70. 70.
    Lipowsky R (1992) Budding of membranes induced by intramembrane domains. J Phys II (France) 2(10):1825–1840CrossRefGoogle Scholar
  71. 71.
    Masters TA et al (2013) Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci USA 110(29):11875–11880PubMedCrossRefGoogle Scholar
  72. 72.
    Michel R et al (2014) Internalization of silica nanoparticles into fluid liposomes: formation of interesting hybrid colloids. Angew Chem Int Ed 53(46):12441–12445Google Scholar
  73. 73.
    Mihut AM et al (2013) Tunable adsorption of soft colloids on model biomembranes. ACS Nano 7(12):10752–10763PubMedCrossRefGoogle Scholar
  74. 74.
    Möller J et al (2012) The race to the pole: how high-aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous escherichia coli bacteria by macrophages. Nano Lett 12(6):2901–2905PubMedCrossRefGoogle Scholar
  75. 75.
    Monopoli MP et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786PubMedCrossRefGoogle Scholar
  76. 76.
    Monticelli L et al (2009) Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5(22):4433–4445CrossRefGoogle Scholar
  77. 77.
    Nicolson GL (2014) The fluid—mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta Rev Biomembr 1838(6):1451–1466CrossRefGoogle Scholar
  78. 78.
    Noda T et al (2006) Assembly and budding of ebolavirus. PLoS Pathog 2(9):e99–e99PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nowak SA, Chou T (2008) Membrane lipid segregation in endocytosis. Phys Rev E 78(2):021908CrossRefGoogle Scholar
  80. 80.
    Nowak SA, Chou T (2009) Mechanisms of receptor/coreceptor-mediated entry of enveloped viruses. Biophys J 96(7):2624–2636PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Osaki F et al (2004) A quantum dot conjugated sugar ball and its cellular uptake. on the size effects of endocytosis in the subviral region. J Am Chem Soc 126(21):6520–6521PubMedCrossRefGoogle Scholar
  82. 82.
    Park J-G, Forster JD, Dufresne ER (2010) High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J Am Chem Soc 132(17):5960–5961PubMedCrossRefGoogle Scholar
  83. 83.
    Pletikapić G et al (2012) Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance. J Mol Recognit 25(5):309–317PubMedCrossRefGoogle Scholar
  84. 84.
    Pogodin S, Baulin VA (2010) Can a carbon nanotube pierce through a phospholipid bilayer? ACS Nano 4(9):5293–5300PubMedCrossRefGoogle Scholar
  85. 85.
    Raatz M, Lipowsky R, Weikl TR (2014) Cooperative wrapping of nanoparticles by membrane tubes. Soft Matter 10(20):3570–3577PubMedCrossRefGoogle Scholar
  86. 86.
    Reynwar BJ, Deserno M (2011) Membrane-mediated interactions between circular particles in the strongly curved regime. Soft Matter 7(18):8567–8575CrossRefGoogle Scholar
  87. 87.
    Reynwar BJ et al (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447(7143):461–464PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Richards DM, Endres RG (2014) The mechanism of phagocytosis: two stages of engulfment. Biophys J 107(7):1542–1553PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Roiter Y et al (2008) Interaction of nanoparticles with lipid membrane. Nano Lett 8(3):941–944PubMedCrossRefGoogle Scholar
  90. 90.
    Rossi G, Monticelli L (2014) Modeling the effect of nano-sized polymer particles on the properties of lipid membranes. J Phys Condens Matter 26(50):503101PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sackmann E (1995) Biological membranes architecture and function. In: Lipowsky R, Sackmann E (eds) Structure and dynamics of membranes. Elsevier, AmsterdamGoogle Scholar
  92. 92.
    Šarić A, Cacciuto A (2011) Soft elastic surfaces as a platform for particle self-assembly. Soft Matter 7(18):8324–8329CrossRefGoogle Scholar
  93. 93.
    Šarić A, Cacciuto A (2012) Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles. Phys Rev Lett 108(11):118101PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Šarić A, Cacciuto A (2012) Mechanism of membrane tube formation induced by adhesive nanocomponents. Phys Rev Lett 109(18):188101PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Šarić A, Cacciuto A (2013) Self-assembly of nanoparticles adsorbed on fluid and elastic membranes. Soft Matter 9(29):6677–6695CrossRefGoogle Scholar
  96. 96.
    Schäfer LV et al (2011) Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc Natl Acad Sci USA 108(4):1343–1348PubMedCrossRefGoogle Scholar
  97. 97.
    Smith KA, Jasnow D, Balazs AC (2007) Designing synthetic vesicles that engulf nanoscopic particles. J Chem Phys 127(8):084703PubMedCrossRefGoogle Scholar
  98. 98.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on e. coli as a model for gram-negative bacteria. J Colloid Int Sci 275(1):177–182CrossRefGoogle Scholar
  99. 99.
    Taturet S et al (2013) Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir 29(22):6606–6614CrossRefGoogle Scholar
  100. 100.
    Tian F, Zhang X, Dong W (2014) How hydrophobic nanoparticles aggregate in the interior of membranes: a computer simulation. Phys Rev E 90(5):052701CrossRefGoogle Scholar
  101. 101.
    Tollis S et al (2010) The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC Syst Biol 4(1):149PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tzlil S et al (2004) A statistical-thermodynamic model of viral budding. Biophys J 86(4):2037–2048PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Upadhyaya A, Sheetz MP (2004) Tension in tubulovesicular networks of golgi and endoplasmic reticulum membranes. Biophys J 86(5):2923–2928PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Vácha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11(12):5391–5395PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Van Lehn RC, Alexander-Katz A (2014) Fusion of ligand-coated nanoparticles with lipid bilayers: effect of ligand flexibility. J Phys Chem A 118(31):5848–5856PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Van Lehn RC, Alexander-Katz A (2014) Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins. J Phys Chem B 118(44):12586–12598PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Van Lehn RC et al (2014) Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nat Commun 5:Article No 4482Google Scholar
  108. 108.
    van Zon JS et al (2009) A mechanical bottleneck explains the variation in cup growth during fcγr phagocytosis. Mol Syst Biol 5(1):298PubMedPubMedCentralGoogle Scholar
  109. 109.
    Vandoolaeghe P et al (2008) Adsorption of cubic liquid crystalline nanoparticles on model membranes. Soft Matter 4(11):2267–2277CrossRefGoogle Scholar
  110. 110.
    Vasir JK, Labhasetwar V (2008) Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29(31):4244–4252PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Verma A et al (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wang T et al (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6(2):1251–1259PubMedCrossRefGoogle Scholar
  113. 113.
    Welsch S et al (2010) Electron tomography reveals the steps in filovirus budding. PLoS Pathog 6(4):e1000875PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Werner M, Sommer J-U, Baulin VA (2012) Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability. Soft Matter 8(46):11714–11722CrossRefGoogle Scholar
  115. 115.
    Wu H-J et al (2012) Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nat Methods 9:1189–1191PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Yang K, Ma Y-Q (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583PubMedCrossRefGoogle Scholar
  117. 117.
    Yi X, Gao H (2015) Cell membrane wrapping of a spherical thin elastic shell. Soft Matter 11(6):1107–1115PubMedCrossRefGoogle Scholar
  118. 118.
    Yi X, Shi X, Gao H (2011) A universal law for cell uptake of one-dimensional nanomaterials. Nano Lett 107(9):098101Google Scholar
  119. 119.
    Yi X, Shi X, Gao H (2014) Cellular uptake of elastic nanoparticles. Phys Rev Lett 14(2):1049–1055Google Scholar
  120. 120.
    Yuan H et al (2010) Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett 105(13):138101PubMedCrossRefGoogle Scholar
  121. 121.
    Yue T, Zhang X (2013) Molecular modeling of the pathways of vesicle–membrane interaction. Soft Matter 9(2):559–569CrossRefGoogle Scholar
  122. 122.
    Zemel A, Ben-Shaul A, May S (2005) Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation. Eur Biophys J 34(3):230–242PubMedCrossRefGoogle Scholar
  123. 123.
    Zhang S et al (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21(4):419–424PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhang Y et al (2012) Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl Mater Interfaces 4(8):4099–4105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Thorsten Auth
    • 1
    Email author
  • Sabyasachi Dasgupta
    • 2
  • Gerhard Gompper
    • 1
  1. 1.Forschungzentrum Jülich, Theoretical Soft Matter and BiophysicsInstitute of Complex Systems and Institute for Advanced SimulationJülichGermany
  2. 2.National University of SingaporeMechanobiology InstituteSingaporeSingapore

Personalised recommendations