Advertisement

Mechanosensitivity of Membrane Budding and Trafficking

  • Lionel ForetEmail author
Chapter

Abstract

Intracellular compartments continually exchange material transported by small vesicles or tubules, which are formed in the membrane of the donor compartments and eventually fuse with the membrane of the receptor compartments. The formation and fission of a membrane bud giving rise to a new object and the fusion are controlled to some extent by the mechanical properties of the membranes, in particular their tension. In this chapter, we review the different mechanisms of vesicle and tubule budding and analyze the influence of the membrane tension on these processes using basic considerations of thermodynamics and mechanics. In any case, vesicle and tubule production can be impaired at high enough tension. Next, we discuss the influence of tension on membrane fusion, which is a less understood problem. Finally, since the release/absorption of vesicles or tubules should affect the tension of the donor/receptor, we speculate about the possible regulatory role of the membrane tension on intracellular trafficking and compartments stability.

Keywords

Intracellular trafficking Biological membrane Budding Fusion Tension 

References

  1. 1.
    Agrawal NJ, Nukpezah J, Radhakrishnan R (2010) Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput Biol 6(9):e1000926PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Garland, New YorkCrossRefGoogle Scholar
  3. 3.
    Antonny B (2006) Membrane deformation by protein coats. Curr Opin Cell Biol 18(4):386–394PubMedCrossRefGoogle Scholar
  4. 4.
    Ayton GS, Blood PD, Voth GA (2007) Membrane remodeling from n-bar domain interactions: insights from multi-scale simulation. Biophys J 92(10):3595–3602PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Beck R, Ravet M, Wieland FT, Cassel D (2009) The COPI system: molecular mechanisms and function. FEBS Lett 583(17):2701–2709PubMedCrossRefGoogle Scholar
  6. 6.
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166PubMedCrossRefGoogle Scholar
  7. 7.
    Boulant S, Kural C, Zeeh J-C, Ubelmann F, Kirchhausen T (2011) Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat Cell Biol 13(9):1124–1131PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bukman DJ, Yao JH, Wortis M (1996) Stability of cylindrical vesicles under axial tension. Phys Rev E 54(5):5463CrossRefGoogle Scholar
  9. 9.
    Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682PubMedCrossRefGoogle Scholar
  10. 10.
    Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Carlton J, Bujny M, Peter BJ, Oorschot VMJ, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol 14(20):1791–1800PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng Y, Boll W, Kirchhausen T, Harrison SC, Walz T (2007) Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. J Mol Biol 365(3):892–899PubMedCrossRefGoogle Scholar
  13. 13.
    Chernomordik LV, Kozlov MM Mechanics of membrane fusion. Nat Struct Mol Biol 15(7):675–683 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chizmadzhev YA, Kumenko DA, Kuzmin PI, Chernomordik LV, Zimmerberg J, Cohen FS (1999) Lipid flow through fusion pores connecting membranes of different tensions. Biophys J 76(6):2951–2965PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cohen FS, Akabas MH, Finkelstein A (1982) Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science 217(4558):458–460PubMedCrossRefGoogle Scholar
  16. 16.
    Cullen PJ (2008) Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9(7):574–582PubMedCrossRefGoogle Scholar
  17. 17.
    Cullen PJ, Korswagen HC (2012) Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 14(1):29–37CrossRefGoogle Scholar
  18. 18.
    Dabora SL, Sheetz MF (1988) The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54(1):27–35PubMedCrossRefGoogle Scholar
  19. 19.
    den Otter WK, Briels WJ (2011) The generation of curved clathrin coats from flat plaques. Traffic 12(10):1407–1416CrossRefGoogle Scholar
  20. 20.
    Derényi I, Jülicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88(23):238101PubMedCrossRefGoogle Scholar
  21. 21.
    Derényi I, Koster G, Van Duijn MM, Czövek A, Dogterom M, Prost J (2007) Membrane nanotubes. In: Controlled nanoscale motion. Springer, Berlin, pp 141–159CrossRefGoogle Scholar
  22. 22.
    Dommersnes PG, Orwar O, Brochard-Wyart F, Joanny JF (2005) Marangoni transport in lipid nanotubes. Europhys Lett 70(2):271CrossRefGoogle Scholar
  23. 23.
    Faini M, Prinz S, Beck R, Schorb M, Riches JD, Bacia K, Brügger B, Wieland FT, Briggs JAG (2012) The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 336(6087):1451–1454PubMedCrossRefGoogle Scholar
  24. 24.
    Faini M, Beck R, Wieland FT, Briggs JAG (2013) Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol 23(6):279–288PubMedCrossRefGoogle Scholar
  25. 25.
    Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155(2):193–200PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Feiguin F, Ferreira A, Kosik KS, Caceres A (1994) Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 127(4):1021–1039PubMedCrossRefGoogle Scholar
  27. 27.
    Finkelstein A, Zimmerberg J, Cohen FS (1986) Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annu Rev Physiol 48(1):163–174PubMedCrossRefGoogle Scholar
  28. 28.
    Foret L (2014) Shape and energy of a membrane bud induced by protein coats or viral protein assembly. Eur Phys J E 37(5):1–13CrossRefGoogle Scholar
  29. 29.
    Foret L, Sens P (2008) Kinetic regulation of coated vesicle secretion. Proc Natl Acad Sci 105(39):14763–14768PubMedCrossRefGoogle Scholar
  30. 30.
    Foret L, Dawson JE, Villaseñor R, Collinet C, Deutsch A, Brusch L, Zerial M, Kalaidzidis Y, Jülicher F (2012) A general theoretical framework to infer endosomal network dynamics from quantitative image analysis. Curr Biol 22(15):1381–1390PubMedCrossRefGoogle Scholar
  31. 31.
    Fournier JB (1996) Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76(23):4436PubMedCrossRefGoogle Scholar
  32. 32.
    Frank JR, Kardar M (2008) Defects in nematic membranes can buckle into pseudospheres. Phys Rev E 77(4):041705CrossRefGoogle Scholar
  33. 33.
    Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, De Camilli P, Unger VM (2008) Structural basis of membrane invagination by f-bar domains. Cell 132(5):807–817PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Frost A, Unger VM, De Camilli P (2009) The bar domain superfamily: membrane-molding macromolecules. Cell 137(2):191–196PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci 108(35):14467–14472PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22(10):527–535PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Grafmüller A, Shillcock J, Lipowsky R (2007) Pathway of membrane fusion with two tension-dependent energy barriers. Phys Rev Lett 98(21):218101PubMedCrossRefGoogle Scholar
  39. 39.
    Grafmüller A, Shillcock J, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys J 96(7):2658–2675PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gürkan C, Stagg SM, LaPointe P, Balch WE (2006) The COPII cage: unifying principles of vesicle coat assembly. Nat Rev Mol Cell Biol 7(10):727–738PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hanson PI, Roth R, Lin Y, Heuser JE (2008) Plasma membrane deformation by circular arrays of ESCRT-iii protein filaments. J Cell Biol 180(2):389–402PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Heinrich V, Božič B, Svetina S, Žekš B (1999) Vesicle deformation by an axial load: from elongated shapes to tethered vesicles. Biophys J 76(4):2056–2071PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hochmuth RM, Wiles HC, Evans EA, McCown JT (1982) Extensional flow of erythrocyte membrane from cell body to elastic tether. II. experiment. Biophys J 39(1):83PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hsu VW, Lee SY, Yang J-S (2009) The evolving understanding of COPI vesicle formation. Nat Rev Mol Cell Biol 10(5):360–364PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA, Prinz WA (2008) Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319(5867):1247–1250PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hurley JH, Boura E, Carlson L-A, Różycki B (2010) Membrane budding. Cell 143(6):875–887PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jackson LP (2014) Structure and mechanism of COPI vesicle biogenesis. Curr Opin Cell Biol 29:67–73PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Jin AJ, Prasad K, Smith PD, Lafer EM, Nossal R (2006) Measuring the elasticity of clathrin-coated vesicles via atomic force microscopy. Biophys J 90(9):3333–3344PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jülicher F, Seifert U (1994) Shape equations for axisymmetric vesicles: a clarification. Phys Rev E 49(5):4728CrossRefGoogle Scholar
  50. 50.
    Kirchhausen T (2009) Imaging endocytic clathrin structures in living cells. Trends Cell Biol 19(11):596–605PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1(3):187–198PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kirchhausen T (2012) Bending membranes. Nat Cell Biol 14(9):906–908PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Koster G, VanDuijn M, Hofs B, Dogterom M (2003) Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc Natl Acad Sci 100(26):15583–15588PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kozlov MM, Campelo F, Liska N, Chernomordik LV, Marrink SJ, McMahon HT (2014) Mechanisms shaping cell membranes. Curr Opin Cell Biol 29:53–60PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kozlovsky Y, Kozlov MM (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys J 82(2):882–895PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B 10(1):5–8CrossRefGoogle Scholar
  57. 57.
    Krauss M, Jia J-Y, Roux A, Beck R, Wieland FT, De Camilli P, Haucke P (2008) Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem 283(41):27717–27723PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Leduc C, Campàs O, Zeldovich KB, Roux A, Jolimaitre P, Bourel-Bonnet L, Goud B, Joanny J-F, Bassereau P, Prost J (2004) Cooperative extraction of membrane nanotubes by molecular motors. Proc Natl Acad Sci USA 101(49):17096–17101PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lee JY, Schick M (2007) Dependence of the energies of fusion on the intermembrane separation: optimal and constrained. J Chem Phys 127(7):075102PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lee MCS, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122(4):605–617PubMedCrossRefGoogle Scholar
  61. 61.
    Leibler S (1986) Curvature instability in membranes. J Phys 47(3):507–516CrossRefGoogle Scholar
  62. 62.
    Leibler S, Andelman D (1987) Ordered and curved meso-structures in membranes and amphiphilic films. J Phys 48(11):2013–2018CrossRefGoogle Scholar
  63. 63.
    Lipowsky R (2013) Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss 161:305–331PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Manneville J-B, Casella J-F, Ambroggio E, Gounon P, Bertherat J, Bassereau P, Cartaud J, Antonny B, Goud B (2008) COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc Natl Acad Sci 105(44):16946–16951PubMedCrossRefGoogle Scholar
  65. 65.
    Markvoort AJ, Marrink SJ (2011) Lipid acrobatics in the membrane fusion arena. Curr Top Membr 68:259–294PubMedCrossRefGoogle Scholar
  66. 66.
    Marsh BJ, Volkmann N, McIntosh JR, Howell KE (2004) Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101(15):5565–5570PubMedCrossRefGoogle Scholar
  67. 67.
    Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7(5):373–378PubMedCrossRefGoogle Scholar
  68. 68.
    McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533PubMedCrossRefGoogle Scholar
  69. 69.
    McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    McMahon HT, Mills IG (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 16(4):379–391PubMedCrossRefGoogle Scholar
  71. 71.
    McMahon HT, Kozlov MM, Martens S (2010) Membrane curvature in synaptic vesicle fusion and beyond. Cell 140(5):601–605PubMedCrossRefGoogle Scholar
  72. 72.
    Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179(2):79–102PubMedCrossRefGoogle Scholar
  73. 73.
    Noguchi H (2016) Membrane remodeling from n-bar domain interactions: insights from multi-scale simulation. Sci Rep 6:20935PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303(5657):495–499PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Polishchuk RS, Capestrano M, Polishchuk EV (2009) Shaping tubular carriers for intracellular membrane transport. FEBS Lett 583(23):3847–3856PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Powers TR, Huber G, Goldstein RE (2002) Fluid-membrane tethers: minimal surfaces and elastic boundary layers. Phys Rev E 65(4):041901CrossRefGoogle Scholar
  77. 77.
    Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2013) Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation. Biophys J 104(5):1018–1028PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77(4):1992–2002PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Raucher D, Sheetz MP (1999) Membrane expansion increases endocytosis rate during mitosis. J Cell Biol 144(3):497–506PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749PubMedCrossRefGoogle Scholar
  81. 81.
    Risselada HJ, Grubmüller H (2012) How snare molecules mediate membrane fusion: recent insights from molecular simulations. Curr Opin Struct Biol 22(2):187–196PubMedCrossRefGoogle Scholar
  82. 82.
    Risselada HJ, Kutzner C, Grubmüller H (2011) Caught in the act: visualization of snare-mediated fusion events in molecular detail. ChemBioChem 12(7):1049–1055PubMedCrossRefGoogle Scholar
  83. 83.
    Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci 99(8):5394–5399PubMedCrossRefGoogle Scholar
  84. 84.
    Roux A, Koster G, Lenz M, Sorre B, Manneville J-B, Nassoy P, Bassereau P (2010) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci 107(9):4141–4146PubMedCrossRefGoogle Scholar
  85. 85.
    Safran SA (1994) Statistical thermodynamics of surfaces, interfaces, and membranes. Addison-Wesley, ReadingGoogle Scholar
  86. 86.
    Saleem M, Morlot S, Hohendahl A, Manzi J, Lenz M, Roux A (2015) A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat Commun 6(6249)Google Scholar
  87. 87.
    Schick M (2011) Membrane fusion: the emergence of a new paradigm. J Stat Phys 142(6):1317–1323CrossRefGoogle Scholar
  88. 88.
    Sciaky N, Presley J, Smith C, Zaal KJM, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of Brefeldin A visualized in living cells. J Cell Biol 139(5):1137–1155PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137CrossRefGoogle Scholar
  90. 90.
    Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44(2):1182PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sens P, Turner MS (2006) Budded membrane microdomains as tension regulators. Phys Rev E 73:031918CrossRefGoogle Scholar
  92. 92.
    Shaklee PM, Idema T, Koster G, Storm C, Schmidt T, Dogterom M (2008) Bidirectional membrane tube dynamics driven by nonprocessive motors. Proc Natl Acad Sci 105(23):7993–7997PubMedCrossRefGoogle Scholar
  93. 93.
    Shen H, Pirruccello M, De Camilli P (2012) Snapshot: membrane curvature sensors and generators. Cell 150(6):1300–1300PubMedCrossRefGoogle Scholar
  94. 94.
    Shillcock JC, Lipowsky R (2005) Tension-induced fusion of bilayer membranes and vesicles. Nat Mater 4(3):225–228PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L et al (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Smirnova YG, Marrink S-J, Lipowsky R, Knecht V (2010) Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J Am Chem Soc 132(19):6710–6718PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Solon J, Pécréaux J, Girard P, Fauré M-C, Prost J, Bassereau P (2006) Negative tension induced by lipid uptake. Phys Rev Lett 97(9):098103PubMedCrossRefGoogle Scholar
  98. 98.
    Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J, Bassereau P, Roux A (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci 109(1):173–178PubMedCrossRefGoogle Scholar
  99. 99.
    Stachowiak JC, Hayden CC, Sasaki DY (2010) Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc Natl Acad Sci 107(17):7781–7786PubMedCrossRefGoogle Scholar
  100. 100.
    Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY, Sherman MB, Geissler PL, Fletcher DA, Hayden CC (2012) Membrane bending by protein–protein crowding. Nat Cell Biol 14(9):944–949PubMedCrossRefGoogle Scholar
  101. 101.
    Stachowiak JC, Brodsky FM, Miller EA (2013) A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat Cell Biol 15(9):1019–1027PubMedCrossRefGoogle Scholar
  102. 102.
    Stagg SM, LaPointe P, Razvi A, Gürkan C, Potter CS, Carragher B, Balch WE (2008) Structural basis for cargo regulation of COPII coat assembly. Cell 134(3):474–484PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Staykova M, Holmes DP, Read C, Stone HA (2011) Mechanics of surface area regulation in cells examined with confined lipid membranes. Proc Natl Acad Sci 108(22):9084–9088PubMedCrossRefGoogle Scholar
  104. 104.
    Stevens MJ, Hoh JH, Woolf TB (2003) Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. Phys Rev Lett 91(18):188102PubMedCrossRefGoogle Scholar
  105. 105.
    Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1(1):33–39PubMedCrossRefGoogle Scholar
  106. 106.
    Takizawa PA, Yucel JK, Veit B, John Faulkner D, Deerinck T, Soto G, Ellisman M, Malhotra V (1993) Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell 73(6):1079–1090PubMedCrossRefGoogle Scholar
  107. 107.
    Thiam AR, Pincet F (2015) The energy of COPI for budding membranes. PLoS One 10(7):e0133757PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Thiam AR, Antonny B, Wang J, Delacotte J, Wilfling F, Walther TC, Beck R, Rothman JE, Pincet F (2013) Copi buds 60-nm lipid droplets from reconstituted water–phospholipid–triacylglyceride interfaces, suggesting a tension clamp function. Proc Natl Acad Sci 110(33):13244–13249PubMedCrossRefGoogle Scholar
  109. 109.
    Thiam AR, Farese RV Jr, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14(12):775–786PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M et al (2004) Secretory traffic triggers the formation of tubular continuities across golgi sub-compartments. Nat Cell Biol 6(11):1071–1081PubMedCrossRefGoogle Scholar
  111. 111.
    Tsafrir I, Sagi D, Arzi T, Guedeau-Boudeville M-A, Frette V, Kandel D, Stavans J (2001) Pearling instabilities of membrane tubes with anchored polymers. Phys Rev Lett 86(6):1138PubMedCrossRefGoogle Scholar
  112. 112.
    Tsafrir I, Caspi Y, Guedeau-Boudeville M-A, Arzi T, Stavans J (2003) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91(13):138102PubMedCrossRefGoogle Scholar
  113. 113.
    Upadhyaya A, Sheetz MP (2004) Tension in tubulovesicular networks of golgi and endoplasmic reticulum membranes. Biophys J 86(5):2923–2928PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Vale RD, Hotani H (1988) Formation of membrane networks in vitro by Kinesin-driven microtubule movement. J Cell Biol 107(6):2233–2241PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Walani N, Torres J, Agrawal A (2014) Anisotropic spontaneous curvatures in lipid membranes. Phys Rev E 89(6):062715CrossRefGoogle Scholar
  116. 116.
    Walani N, Torres J, Agrawal A (2015) Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proc Natl Acad Sci 112(12):E1423–E1432PubMedPubMedCentralGoogle Scholar
  117. 117.
    Waterman-Storer CM, Salmon ED (1998) Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol 8(14):798–807PubMedCrossRefGoogle Scholar
  118. 118.
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6):759–772PubMedCrossRefGoogle Scholar
  119. 119.
    Wilfling F, Thiam AR, Olarte M-J, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV et al (2014) Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3:e01607PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yamada A, Mamane A, Lee-Tin-Wah J, Di Cicco A, Prévost C, Lévy D, Joanny J-F, Coudrier E, Bassereau P (2014) Catch-bond behaviour facilitates membrane tubulation by non-processive myosin 1b. Nat Commun 5:3624PubMedCrossRefGoogle Scholar
  121. 121.
    Yang J-S, Valente C, Polishchuk RS, Turacchio G, Layre E, Moody DB, Leslie CC, Gelb MH, Brown WJ, Corda D et al (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13(8):996–1003PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R (2012) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14(1):20–28CrossRefGoogle Scholar
  123. 123.
    Zanetti G, Prinz S, Daum S, Meister A, Schekman R, Bacia K, Briggs JAG (2013) The structure of the COPII transport-vesicle coat assembled on membranes. Elife 2:e00951PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhong-Can O-Y, Helfrich W (1989) Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39(10):5280CrossRefGoogle Scholar
  125. 125.
    Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ecole Normale Supérieure, CNRS, UPMC Univ Paris 06Laboratoire de Physique StatistiqueParisFrance

Personalised recommendations