Advertisement

Membrane-Mediated Interactions

  • Anne-Florence BitbolEmail author
  • Doru Constantin
  • Jean-Baptiste Fournier
Chapter

Abstract

Interactions mediated by the cell membrane between inclusions, such as membrane proteins or antimicrobial peptides, play important roles in their biological activity. They also constitute a fascinating challenge for physicists, since they test the boundaries of our understanding of self-assembled lipid membranes, which are remarkable examples of two-dimensional complex fluids. Inclusions can couple to various degrees of freedom of the membrane, resulting in different types of interactions. In this chapter, we review the membrane-mediated interactions that arise from direct constraints imposed by inclusions on the shape of the membrane. These effects are generic and do not depend on specific chemical interactions. Hence, they can be studied using coarse-grained soft matter descriptions. We deal with long-range membrane-mediated interactions due to the constraints imposed by inclusions on membrane curvature and on its fluctuations. We also discuss the shorter-range interactions that arise from the constraints on membrane thickness imposed by inclusions presenting a hydrophobic mismatch with the membrane.

Keywords

Lipid bilayer Continuum elasticity Membrane inclusion Hydrophobic matching Membrane-mediated interactions Fluctuation-induced interactions 

Notes

Acknowledgements

A.-F. B. acknowledges support from the Human Frontier Science Program. D. C. and J.-B. F. acknowledge support by ANR Grant MEMINT (2012-BS04-0023).

References

  1. 1.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Sackmann E (1984) Physical basis for trigger processes and membrane structures. In: Chapman D (ed) Biological membranes, vol 5. Academic, London, pp 105–143Google Scholar
  3. 3.
    Jensen MØ, Mouritsen OG (2004) Lipids do influence protein function–the hydrophobic matching hypothesis revisited. Biochim Biophys Acta: Biomembr 1666:205–226CrossRefGoogle Scholar
  4. 4.
    Helfrich W (1973) Elastic properties of lipid bilayers – theory and possible experiments. Z Naturforsch C J Biosci 28:693–703CrossRefGoogle Scholar
  5. 5.
    Bickel T, Marques C, Jeppesen C (2000) Pressure patches for membranes: the induced pinch of a grafted polymer. Phys Rev E 62(1):1124–1127CrossRefGoogle Scholar
  6. 6.
    Goulian M, Bruinsma R, Pincus P (1993) Long-range forces in heterogeneous fluid membranes. Europhys Lett 22(2):145–150. Erratum: Europhys Lett 23(2):155 (1993). Comment: Ref. [ 9]. A factor 2 in the fluctuation-induced force was corrected in Ref. [ 10].
  7. 7.
    Leibler S (1986) Curvature instability in membranes. J. Physique 47:507–516CrossRefGoogle Scholar
  8. 8.
    Fournier J-B, Galatola P (2015) High-order power series expansion of the elastic interaction between conical membrane inclusions. Eur Phys J E 38:86PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Fournier J-B, Dommersnes PG (1997) Comment on “Long-range forces in heterogeneous fluid membranes”. Europhys Lett 39(6):681–682CrossRefGoogle Scholar
  10. 10.
    Golestanian R, Goulian M, Kardar M (1996) Fluctuation-induced interactions between rods on a membrane. Phys Rev E 54(6):6725–6734CrossRefGoogle Scholar
  11. 11.
    Park JM, Lubensky TC (1996) Interactions between membrane inclusions on fluctuating membranes. J Phys I 6(9):1217–1235Google Scholar
  12. 12.
    Netz RR (1997) Inclusions in fluctuating membranes: exact results. J Physique I – France 7:833–852CrossRefGoogle Scholar
  13. 13.
    Kim KS, Neu J, Oster G (1998) Curvature-mediated interactions between membrane proteins. Biophys J 75(5):2274–2291PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dommersnes PG, Fournier J-B (1999) N-body study of anisotropic membrane inclusions: membrane mediated interactions and ordered aggregation. Eur Phys J B 12(1):9–12CrossRefGoogle Scholar
  15. 15.
    Dommersnes PG, Fournier J-B (1999) Casimir and mean-field interactions between membrane inclusions subject to external torques. Europhys Lett 46(2):256–261CrossRefGoogle Scholar
  16. 16.
    Yolcu C, Rothstein IZ, Deserno M (2011) Effective field theory approach to Casimir interactions on soft matter surfaces. Europhys Lett 96:20003CrossRefGoogle Scholar
  17. 17.
    Yolcu C, Deserno M (2012) Membrane-mediated interactions between rigid inclusions: an effective field theory. Phys Rev E 86:031906CrossRefGoogle Scholar
  18. 18.
    Yolcu C, Rothstein IZ, Deserno M (2012) Effective field theory approach to fluctuation-induced forces between colloids at an interface. Phys Rev E 85:011140CrossRefGoogle Scholar
  19. 19.
    Yolcu C, Deserno M (2014) The Effective Field Theory approach towards membrane-mediated interactions between particles. Adv Colloid Interface Sci 208:89–109PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Golestanian R (1996) Reduced persistence length and fluctuation-induced interactions of directed semiflexible polymers on fluctuating surfaces. Europhys Lett 36:557–561CrossRefGoogle Scholar
  21. 21.
    Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet 51(7):793–796Google Scholar
  22. 22.
    Milonni PW (1994) The quantum vacuum – an introduction to quantum electrodynamics. Academic, New YorkCrossRefGoogle Scholar
  23. 23.
    Helfrich W, Weikl TR (2001) Two direct methods to calculate fluctuation forces between rigid objects embedded in fluid membranes. Eur Phys J E 5:423–439CrossRefGoogle Scholar
  24. 24.
    Kardar M, Golestanian R (1999) The “friction” of vacuum, and other fluctuation-induced forces. Rev Mod Phys 71(4):1233–1245CrossRefGoogle Scholar
  25. 25.
    Gambassi A (2009) The Casimir effect: from quantum to critical fluctuations. JPCS 161:012037Google Scholar
  26. 26.
    Fisher ME, de Gennes PG (1978) Wall phenomena in a critical binary mixture. C R Séances Acad Sci Ser B 287(8):207–209Google Scholar
  27. 27.
    Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C (2008) Direct measurement of critical Casimir forces. Nature 451(7175):172–175PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Machta BB, Veatch SL, Sethna JP (2012) Critical Casimir forces in cellular membranes. Phys Rev Lett 109:138101PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Golestanian R, Goulian M, Kardar M (1996) Fluctuation-induced interactions between rods on membranes and interfaces. Europhys Lett 33(3):241–245CrossRefGoogle Scholar
  30. 30.
    Stamou D, Duschl C, Johannsmann D (2000) Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus. Phys Rev E 62(4, B):5263–5272CrossRefGoogle Scholar
  31. 31.
    Dommersnes PG, Fournier J-B (2002) The many-body problem for anisotropic membrane inclusions and the self-assembly of “saddle” defects into an “egg carton”. Biophys J 83:2898–2905PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11(6):299–300CrossRefGoogle Scholar
  33. 33.
    Simunovic M, Srivastava A, Voth GA (2013) Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. Proc Natl Acad Sci U S A 110(51):20396–20401PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Destainville N (1998) Cluster phases of membrane proteins. Phys Rev E 77:011905CrossRefGoogle Scholar
  35. 35.
    Weikl TR (2001) Fluctuation-induced aggregation of rigid membrane inclusions. Europhys Lett 54:547–553CrossRefGoogle Scholar
  36. 36.
    Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lehle H, Oettel M (2007) Importance of boundary conditions for fluctuation-induced forces between colloids at interfaces. Phys Rev E 75:011602CrossRefGoogle Scholar
  38. 38.
    Noruzifar E, Oettel M (2009) Anisotropies in thermal Casimir interactions: ellipsoidal colloids trapped at a fluid interface. Phys Rev E 79(5):051401CrossRefGoogle Scholar
  39. 39.
    Lin H-K, Zandi R, Mohideen U, Pryadko LP (2011) Fluctuation-induced forces between inclusions in a fluid membrane under tension. Phys Rev Lett 107:228104PubMedCrossRefGoogle Scholar
  40. 40.
    Genet C, Lambrecht A, Reynaud S (2003) Casimir force and the quantum theory of lossy optical cavities. Phys Rev A 67(4):043811CrossRefGoogle Scholar
  41. 41.
    Emig T, Graham N, Jaffe RL, Kardar M (2008) Casimir forces between compact objects: the scalar case. Phys Rev D 77(2):025005CrossRefGoogle Scholar
  42. 42.
    Rahi SJ, Emig T, Graham N, Jaffe RL, Kardar M (2009) Scattering theory approach to electrodynamic Casimir forces. Phys Rev D 80:085021CrossRefGoogle Scholar
  43. 43.
    Weikl TR, Kozlov MM, Helfrich W (1998) Interaction of conical membrane inclusions: effect of lateral tension. Phys Rev E 57:6988–6995CrossRefGoogle Scholar
  44. 44.
    Evans AR, Turner MS, Sens P (2003) Interactions between proteins bound to biomembranes. Phys Rev E 67:041907CrossRefGoogle Scholar
  45. 45.
    Simunovic M, Voth GA (2015) Membrane tension controls the assembly of curvature-generating proteins. Nat Commun 6:7219PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bitbol A-F, Dommersnes PG, Fournier J-B (2010) Fluctuations of the Casimir-like force between two membrane inclusions. Phys Rev E 81:050903(R)Google Scholar
  47. 47.
    Capovilla R, Guven J (2002) Stresses in lipid membranes. J Phys A 35(30):6233–6247CrossRefGoogle Scholar
  48. 48.
    Fournier J-B (2007) On the stress and torque tensors in fluid membranes. Soft Matter 3(7):883–888CrossRefGoogle Scholar
  49. 49.
    Barton G (1991) On the fluctuations of the Casimir force. J Phys A 24(5):991–1005CrossRefGoogle Scholar
  50. 50.
    Bartolo D, Ajdari A, Fournier J-B, Golestanian R (2002) Fluctuations of fluctuation-induced Casimir-like forces. Phys Rev Lett 89(23):230601PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bitbol A-F, Fournier J-B (2011) Forces exerted by a correlated fluid on embedded inclusions. Phys Rev E 83:061107CrossRefGoogle Scholar
  52. 52.
    Fournier J-B (2014) Dynamics of the force exchanged between membrane inclusions. Phys Rev Lett 112:128101. Erratum: Phys Rev Lett 114:219901 (2015)Google Scholar
  53. 53.
    Seifert U, Langer SA (1993) Viscous modes of fluid bilayer membranes. Europhys Lett 23:71–76CrossRefGoogle Scholar
  54. 54.
    Evans E, Yeung A (1994) Hidden dynamics in rapid changes of bilayer shape. Chem Phys Lipids 73:39–56CrossRefGoogle Scholar
  55. 55.
    Fournier J-B (2015) On the hydrodynamics of bilayer membranes. Int J Nonlinear Mech 75:67–76CrossRefGoogle Scholar
  56. 56.
    Bitbol A-F, Peliti L, Fournier J-B (2011) Membrane stress tensor in the presence of lipid density and composition inhomogeneities. Eur Phys J E 34:53PubMedCrossRefGoogle Scholar
  57. 57.
    Dommersnes PG, Fournier J-B, Galatola P (1998) Long-range elastic forces between membrane inclusions in spherical vesicles. Europhys Lett 42:233–238CrossRefGoogle Scholar
  58. 58.
    Podgornik R (1995) Orientational ordering of polymers on a fluctuating flexible surface. Phys Rev E 52:5170–5177CrossRefGoogle Scholar
  59. 59.
    Li H, Kardar M (1992) Fluctuation-induced forces between manifolds immersed in correlated fluids. Phys Rev A 46(10):6490–6500PubMedCrossRefGoogle Scholar
  60. 60.
    Bitbol A-F, Sin Ronia K, Fournier J-B (2011) Universal amplitudes of the Casimir-like interactions between four types of rods in fluid membranes. Europhys Lett 96:40013CrossRefGoogle Scholar
  61. 61.
    Sin Ronia K, Fournier J-B (2012) Universality in the point discretization method for calculating Casimir interactions with classical Gaussian fields. Europhys Lett 100(3):30008CrossRefGoogle Scholar
  62. 62.
    Derjaguin BV (1934) Analysis of friction and adhesion – IV. The theory of the adhesion of small particles. Kolloid Zeitschrift 69:155–164CrossRefGoogle Scholar
  63. 63.
    Weikl TR (2003) Indirect interactions of membrane-adsorbed cylinders. Eur Phys J E 12:265–273PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Müller MM, Deserno M, Guven J (2005) Interface-mediated interactions between particles: a geometrical approach. Phys Rev E 72:061407CrossRefGoogle Scholar
  65. 65.
    Müller MM, Deserno M, Guven J (2005) Geometry of surface-mediated interactions. Europhys Lett 69:482–488CrossRefGoogle Scholar
  66. 66.
    Müller MM, Deserno M (2007) Balancing torques in membrane-mediated interactions: exact results and numerical illustrations. Phys Rev E 76:011921CrossRefGoogle Scholar
  67. 67.
    Mkrtchyan S, Ing C, Chen JZY (2010) Adhesion of cylindrical colloids to the surface of a membrane. Phys Rev E 81:011904CrossRefGoogle Scholar
  68. 68.
    Gosselin P, Mohrbach H, Müller MM (2011) Interface-mediated interactions: entropic forces of curved membranes. Phys Rev E 83:051921CrossRefGoogle Scholar
  69. 69.
    Reynwar BJ, Illya G, Harmandaris VA, Mueller MM, Kremer K, Deserno M (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–464PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yuan H, Huang C, Zhang S (2011) Membrane-mediated inter-domain interactions. BioNanoScience 1:97–102CrossRefGoogle Scholar
  71. 71.
    Reynwar BJ, Deserno M (2011) Membrane-mediated interactions between circular particles in the strongly curved regime. Soft Matter 7:8567–8575CrossRefGoogle Scholar
  72. 72.
    Schweitzer Y, Kozlov MM (2015) Membrane-mediated interaction between strongly anisotropic protein scaffolds. PLOS Comp Biol 11(2):e1004054CrossRefGoogle Scholar
  73. 73.
    Bahrami AH, Lipowsky R, Weikl TR (2012) Tubulation and aggregation of spherical nanoparticles adsorbed on vesicles. Phys Rev Lett 109(18):188102PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Šarić A, Cacciuto A (2013) Self-assembly of nanoparticles adsorbed on fluid and elastic membranes. Soft Matter 9:6677–6695CrossRefGoogle Scholar
  75. 75.
    Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2013) Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation. Biophys J 104(5):1018–1028PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MRE, Fraisier V, Florent J-C, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675PubMedCrossRefGoogle Scholar
  77. 77.
    McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311CrossRefGoogle Scholar
  79. 79.
    Semrau S, Idema T, Schmidt T, Storm C (2009) Membrane-mediated interactions measured using membrane domains. Biophys J 96(12):4906–4915PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Koltover I, Rädler JO, Safinya CR (1999) Membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles. Phys Rev Lett 82:1991–1994CrossRefGoogle Scholar
  81. 81.
    Yue T, Zhang X (2012) Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 6(4):3196–3205PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Šarić A, Cacciuto A (2012) Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles. Phys Rev Lett 108(11):118101PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sarfati R, Dufresne ER (2016) Long-range attraction of particles adhered to lipid vesicles. Phys Rev E 94(1):012604PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Rozovsky S, Kaizuka Y, Groves JT (2005) Formation and spatio-temporal evolution of periodic structures in lipid bilayers. J Am Chem Soc 127(1):36–37PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ursell TS, Klug WS, Phillips R (2009) Morphology and interaction between lipid domains. Proc Natl Acad Sci U S A 106(32):13301–13306PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Heberle FA, Petruzielo RS, Pan J, Drazba P, Kučerka N, Standaert RF, Feigenson GW, Katsaras J (2013) Bilayer thickness mismatch controls domain size in model membranes. J Am Chem Soc 135(18):6853–6859PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Jost PC, Griffiths OH, Capaldi RA, Vanderkooi G (1973) Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A 70:480–484PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Marčelja S (1976) Lipid-mediated protein interaction in membranes. Biochim Biophys Acta: Biomembr 455:1–7CrossRefGoogle Scholar
  89. 89.
    Schröder H (1977) Aggregation of proteins in membranes. An example of fluctuation induced interactions in liquid crystals. J Chem Phys 67:1617–1619Google Scholar
  90. 90.
    Owicki JC, Springgate MW, McConnell H (1978) Theoretical study of protein-lipid interactions in bilayer membranes. Proc Natl Acad Sci U S A 75:1616–1619PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Killian JA (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta: Biomembr 1376:401–416CrossRefGoogle Scholar
  92. 92.
    Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kelkar DA, Chattopadhyay A (2007) The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta: Biomembr 1768:2011–2025CrossRefGoogle Scholar
  94. 94.
    Kolb HA, Bamberg E (1977) Influence of membrane thickness and ion concentration on the properties of the gramicidin A channel: autocorrelation, spectral power density, relaxation and single-channel studies. Biochim Biophys Acta: Biomembr 464:127–141CrossRefGoogle Scholar
  95. 95.
    Elliott JR, Needham D, Dilger JP, Haydon DA (1983) The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim Biophys Acta: Biomembr 735:95–103CrossRefGoogle Scholar
  96. 96.
    Goulian M, Mesquita ON, Fygenson DK, Nielsen C, Andersen OS, Libchaber A (1998) Gramicidin channel kinetics under tension. Biophys J 74:328–337PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Huang HW (1986) Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys J 50:1061–1070PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    de Gennes PG (1974) The physics of liquid crystals. Clarendon Press, OxfordGoogle Scholar
  99. 99.
    Dan N, Pincus P, Safran SA (1993) Membrane-induced interactions between inclusions. Langmuir 9:2768–2771CrossRefGoogle Scholar
  100. 100.
    Aranda-Espinoza H, Berman A, Dan N, Pincus P, Safran S (1996) Interaction between inclusions embedded in membranes. Biophys J 71:648–656PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Brannigan G, Brown FLH (2006) A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers. Biophys J 90(5):1501–1520PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Brannigan G, Brown FLH (2007) Contributions of gaussian curvature and nonconstant lipid volume to protein deformation of lipid bilayers. Biophys J 92(3):864–876PubMedCrossRefGoogle Scholar
  103. 103.
    Watson MC, Penev ES, Welch PM, Brown FLH (2011) Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. J Chem Phys 135:244701PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Bitbol A-F, Constantin D, Fournier J-B (2012) Bilayer elasticity at the nanoscale: the need for new terms. PLoS One 7(11):e48306PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    West B, Brown FLH, Schmid F (2009) Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. Biophys J 96(1):101–115PubMedCrossRefGoogle Scholar
  106. 106.
    Owicki JC, McConnell H (1979) Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc Natl Acad Sci U S A 76:4750–4754PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Dan N, Berman A, Pincus P, Safran SA (1994) Membrane-induced interactions between inclusions. J Phys II France 4:1713–1725CrossRefGoogle Scholar
  108. 108.
    Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76(6):3176–3185PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Neder J, West B, Nielaba P, Schmid F (2011) Membrane-mediated protein-protein interaction: a Monte Carlo study. Curr Nanosci 7(5):656–666CrossRefGoogle Scholar
  110. 110.
    Bories F, Constantin D, Galatola P, Fournier J-B (2018) Coupling between inclusions and membranes at the nanoscale. Phys Rev Lett 120:128104PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Chaikin PM, Lubensky TC (1995) Principles of condensed matter physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  112. 112.
    Fournier J-B (1998) Coupling between membrane tilt-difference and dilation: a new “ripple” instability and multiple crystalline inclusions phases. Europhys Lett 43(6):725–730CrossRefGoogle Scholar
  113. 113.
    May S, Ben-Shaul A (1999) Molecular theory of lipid-protein interaction and the Lα-H|| transition. Biophys J 76:751–767PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    May S, Ben-Shaul A (2000) A molecular model for lipid-mediated interaction between proteins in membranes. Phys Chem Chem Phys 2:4494–4502CrossRefGoogle Scholar
  115. 115.
    May S (2002) Membrane perturbations induced by integral proteins: role of conformational restrictions of the lipid chains. Langmuir 18:6356–6364CrossRefGoogle Scholar
  116. 116.
    Bohinc K, Kralj-Iglič V, May S (2003) Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J Chem Phys 119:7435–7444CrossRefGoogle Scholar
  117. 117.
    Kozlovsky Y, Zimmerberg J, Kozlov MM (2004) Orientation and interaction of oblique cylindrical inclusions embedded in a lipid monolayer: a theoretical model for viral fusion peptides. Biophys J 87:999–1012PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Haselwandter CA, Phillips R (2013) Directional interactions and cooperativity between mechanosensitive membrane proteins. Europhys Lett 101(6):68002PubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ursell T, Huang KC, Peterson E, Phillips R (2007) Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol 3(5):803–812CrossRefGoogle Scholar
  120. 120.
    Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459(7245):379–385PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kahraman O, Klug WS, Haselwandter CA (2014) Signatures of protein structure in the cooperative gating of mechanosensitive ion channels. Europhys Lett 107(4):48004CrossRefGoogle Scholar
  122. 122.
    Haselwandter CA, Wingreen NS (2014) The role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices. PLoS Comput Biol 10(12):e1003932PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci U S A 109(10):3766–3771PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Sintes T, Baumgärtner A (1997) Protein attraction in membranes induced by lipid fluctuations. Biophys J 73:2251–2259PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Lagüe P, Zuckermann MJ, Roux B (2000) Lipid-mediated interactions between intrinsic membrane proteins: a theoretical study based on integral equations. Biophys J 79:2867–2879PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lagüe P, Zuckermann MJ, Roux B (2001) Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys J 81:276–284PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Janosi L, Prakash A, Doxastakis M (2010) Lipid-modulated sequence-specific association of glycophorin A in membranes. Biophys J 99(1):284–292PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kik RA, Leermakers FAM, Kleijn JM (2010) Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions. Phys Rev E 81(2):021915CrossRefGoogle Scholar
  129. 129.
    Yoo J, Cui Q (2013) Membrane-mediated protein-protein interactions and connection to elastic models: a coarse-grained simulation analysis of gramicidin A association. Biophys J 104:128–138PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Dunton TA, Goose JE, Gavaghan DJ, Sansom MSP, Osborne JM (2014) The free energy landscape of dimerization of a membrane protein, NanC. PLoS Comput Biol 10(1):e1003417PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Marčelja S (1999) Toward a realistic theory of the interaction of membrane inclusions. Biophys J 76:593–594PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lewis BA, Engelman DM (1983) Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. J Mol Biol 166:203–210PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Chen YS, Hubbell WL (1973) Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res 17:517–532PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    James R, Branton D (1973) Lipid- and temperature-dependent structural changes in Acholeplasma laidlawii cell membranes. Biochim Biophys Acta 323:378–390PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Abney JR, Braun J, Owicki JC (1987) Lateral interactions among membrane proteins: implications for the organization of gap junctions. Biophys J 52:441–454PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pearson LT, Lewis BA, Engelman DM, Chan SI (1983) Pair distribution functions of bacteriorhodopsin and rhodopsin in model bilayers. Biophys J 43:167–174PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Pearson LT, Edelman J, Chan SI (1984) Statistical mechanics of lipid membranes, protein correlation functions and lipid ordering. Biophys J 45:863–871PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Braun J, Abney JR, Owicki JC (1987) Lateral interactions among membrane proteins: valid estimates based on freeze-fracture electron microscopy. Biophys J 52:427–439PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Muller DJ (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98(22):12468–12472PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Casuso I, Sens P, Rico F, Scheuring S (2010) Experimental evidence for membrane-mediated protein-protein interaction. Biophys J 99(7):L47–L49PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    He K, Ludtke SJ, Huang HW, Worcester DL (1995) Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34:15614–15618PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    He K, Ludtke SJ, Worcester DL, Huang HW (1996) Neutron scattering in the plane of the membranes: structure of alamethicin pores. Biophys J 70:2659–2666PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Yang L, Weiss TM, Harroun TA, Heller WT, Huang HW (1999) Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis. Biophys J 77:2648–2656PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Constantin D, Brotons G, Jarre A, Li C, Salditt T (2007) Interaction of alamethicin pores in DMPC bilayers. Biophys J 92:3978–3987PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Constantin D, Pansu B, Impéror M, Davidson P, Ribot F (2008) Repulsion between inorganic particles inserted within surfactant bilayers. Phys Rev Lett 101:098101PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Constantin D (2010) The interaction of hybrid nanoparticles inserted within surfactant bilayers. J Chem Phys 133:144901PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Constantin D (2009) Membrane-mediated repulsion between gramicidin pores. Biochim Biophys Acta: Biomembr 1788:1782–1789CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anne-Florence Bitbol
    • 1
    • 2
    Email author
  • Doru Constantin
    • 3
  • Jean-Baptiste Fournier
    • 4
  1. 1.Sorbonne UniversitéCNRS, Laboratoire Jean Perrin (UMR 8237)ParisFrance
  2. 2.Lewis-Sigler Institute for Integrative Genomics and Department of PhysicsPrinceton UniversityPrincetonUSA
  3. 3.Laboratoire de Physique des Solides, CNRS, Univ. Paris-SudUniversité Paris-SaclayOrsayFrance
  4. 4.Laboratoire “Matière et Systèmes Complexes” (MSC)UMR 7057 CNRS, Université Paris 7 DiderotParis Cedex 13France

Personalised recommendations