Advertisement

Biomembrane Mechanical Properties Direct Diverse Cell Functions

  • Dennis E. Discher
Chapter

Abstract

The shape of any cell is defined and delimited by the shape of the outermost membrane of lipid. Whether a cell’s membrane is locally flat, protrusive, or invaginated at a given instant is often the resultant of forces generated by molecules within the cell as well as those attributable to external factors. For mammalian cells, major changes in cell shape are evident in processes that include cell spreading, migration, and cell division as well as differentiation and death. Such processes are illustrated here for blood cells, starting with stem cells in bone marrow plus the many different types of circulating cells, particularly RBCs whose membranes have been more deeply studied for decades compared to other mammalian cell types. A handful of the key proteins that apply or resist forces at the membrane are described here while focusing on the cortical protein meshworks that underlie membranes and contribute to properties and processes. Engulfment of particles and cells is one particular focus, with broad relevance to disease and therapy. Equally interesting is the frequently noted observation that changes in cell shape and orientation are also evident in shape and orientation changes of the cell's nucleus—which is again delimited by a membrane. A final section focuses on the physics of a sub-membranous lamina in the nucleus, which interfaces with the genome and provides insight into mechanosensing and cell fates.

Keywords

Red blood cells Hematopoiesis Membrane skeleton Myosin Mechanobiology Nucleus Lamins Differentiation 

Notes

Acknowledgements

The author gratefully acknowledges support of the National Institutes of Health, including National Heart, Lung & Blood Institute (R01 HL124106, R21 HL128187) and National Cancer Institute under Physical Sciences Oncology Center Award U54 CA193417, a Human Frontiers Sciences Program grant RGP0024, and the US–Israel Binational Science Foundation, National Science Foundation grant agreement CMMI 15-48571.

References

  1. 1.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257:491–496CrossRefGoogle Scholar
  3. 3.
    Shin JW, Buxboim A, Spinler KR, Swift J et al (2014) Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 14:81–93PubMedCrossRefGoogle Scholar
  4. 4.
    Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14:R674–R685PubMedCrossRefGoogle Scholar
  5. 5.
    Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76:477–491CrossRefGoogle Scholar
  6. 6.
    Chang JT, Palanivel VR, Kinjyo I, Schambach F et al (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315:1687–1691PubMedCrossRefGoogle Scholar
  7. 7.
    Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873PubMedCrossRefGoogle Scholar
  8. 8.
    Raab M, Discher DE (2016) Matrix rigidity regulates the microtubule network polarization in migration. Cytoskeleton (Hoboken) 74(3):114–124.  https://doi.org/10.1002/cm.21349 CrossRefGoogle Scholar
  9. 9.
    Merkel R, Simson R, Simson DA, Hohenadl M et al (2000) A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium. Biophys J 79:707–719PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Shin JW, Swift J, Spinler KR, Discher DE (2011) Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes. Proc Natl Acad Sci 108(28):11458–11463PubMedCrossRefGoogle Scholar
  11. 11.
    Sedzinski J, Biro M, Oswald A, Tinevez JY, Salbreux G, Paluch E (2011) Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476:462–466PubMedCrossRefGoogle Scholar
  12. 12.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  13. 13.
    Holst J, Watson S, Lord MS, Eamegdool SS, Bax DV, Nivison-Smith LB, Kondyurin A, Ma L, Oberhauser AF, Weiss AS, Rasko JE (2010) Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol 28(10):1123–1128PubMedCrossRefGoogle Scholar
  14. 14.
    Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, García-Cardeña G, Daley GQ (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459(7250):1131–1135PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Shin ME, He Y, Li D, Na S, Chowdhury F, Poh YC, Collin O, Su P, de Lanerolle P, Schwartz MA, Wang N, Wang F (2010) Spatiotemporal organization, regulation, and functions of tractions during neutrophil chemotaxis. Blood 116:3297–3310PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ubukawa K, Guo YM, Takahashi M, Hirokawa M, Michishita Y, Nara M, Tagawa H, Takahashi N, Komatsuda A, Nunomura W, Takakuwa Y, Sawada K (2012) Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood 119(4):1036–1044PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hebiguchi M, Hirokawa M, Guo YM, Saito K, Wakui H, Komatsuda A, Fujishima N, Takahashi N, Takahashi T, Sasaki T, Nunomura W, Takakuwa Y, Sawada K (2008) Dynamics of human erythroblast enucleation. Int J Hematol 88(5):498–507PubMedCrossRefGoogle Scholar
  18. 18.
    Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112(3):470–478PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, Wagner DD, Graf T, Italiano JE Jr, Shivdasani RA, von Andrian UH (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317:1767–1770PubMedCrossRefGoogle Scholar
  20. 20.
    Spinler KR, Shin JW, Lambert MP, Discher DE (2015) Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia. Blood 125(3):525–533PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Smith AS, Nowak RB, Zhou S, Giannetto M, Gokhin DS, Papoin J, Ghiran IC, Blanc L, Wan J, Fowler VM (2018 May 8) Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability. Proc Natl Acad Sci USA 115(19):E4377–E4385PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Waugh RE, McKenney JB, Bauserman RG, Brooks DM, Valeri CR, Snyder LM (1997) Surface area and volume changes during maturation of reticulocytes in the circulation of the baboon. J Lab Clin Med 129(5):527–535PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Subramanian S, Tsai R, Sen S, Dahl KN, Discher DE (2006) Membrane mobility and clustering of Integrin Associated Protein (IAP, CD47)—Major differences between mouse and man and implications for signaling. Blood Cells Mol Dis 36(3):364–372PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Schmidt CF, Svoboda K, Lei N, Petsche IB, Berman LE, Safinya CR, Grest GS (1993) Existence of a flat phase in red cell membrane skeletons. Science 259(5097):952–955PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gifford SC, Derganc J, Shevkoplyas SS, Yoshida T, Bitensky MW (2006) A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br J Haematol 135(3):395–404PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Discher DE, Boal DH, Boey SK (1998) Simulations of the erythrocyte cytoskeleton at large deformation II: micropipette aspiration. Biophys J 75(3):1584–1597PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Johnson CP, Tang HY, Carag C, Speicher DW, Discher DE (2007) Forced unfolding of proteins within cells. Science 317:663–666PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sen S, Subramanian S, Discher DE (2005) Indentation and adhesive probing of a cell membrane with AFM: model and experiments. Biophys J 89:3202–3213Google Scholar
  30. 30.
    Hategan A, Law R, Kahn S, Discher DE (2003) Adhesively tensed erythrocyte membrane: lysis dynamics and AFM probing. Biophys J 85:2746–2759PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Evans E, Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76(5):2439–2447PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Shu S, Liu X, Korn ED (2005) Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in dictyostelium. Proc Natl Acad Sci USA 102:1472–1477PubMedCrossRefGoogle Scholar
  33. 33.
    Skoczek DA, Walczysko P, Horn N, Parris A, Clare S, Williams MR, Sobolewski A (2014) Luminal microbes promote monocyte-stem cell interactions across a healthy colonic epithelium. J Immunol 193:439–451PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yonit L, Deborah W, Ronnie BG, David E, Keren SH, Merad M, Jung S, Amit I (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326CrossRefGoogle Scholar
  35. 35.
    Alvey C, Discher DE (2017 July) Engineering macrophages to eat cancer: from “marker of self” CD47 and phagocytosis to differentiation. J Leukoc Biol 102(1):31–40PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE (2013) Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–975PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 108:10980–10985PubMedCrossRefGoogle Scholar
  38. 38.
    Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chambers E, Mitragotri S (2007) Long circulating nanoparticles via adhesion on red blood cells: Mechanism and extended circulation. Exp Biol Med (Maywood) 232:958–966Google Scholar
  40. 40.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 104:15549PubMedCrossRefGoogle Scholar
  41. 41.
    Swanson JA, Hoppe AD (2004) The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 76:1093PubMedCrossRefGoogle Scholar
  42. 42.
    Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popovic Z, Jain RK, Bawendi MG, Fukumura D (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci USA 108:2426–2431PubMedCrossRefGoogle Scholar
  43. 43.
    Turk MJ, Waters DJ, Low PS (2004) Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 213:165–172PubMedCrossRefGoogle Scholar
  44. 44.
    Rhee I, Davidson D, Souza CM, Vacher J, Veillette A (2013) Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. Mol Cell Biol 33:2458–2469PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Turrini F, Arese P, Yuan J, Low PS (1991) Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem 266:23611–23617PubMedGoogle Scholar
  46. 46.
    Franco RS, Puchulu-Campanella ME, Barber LA, Palascak MB, Joiner CH, Low PS, Cohen RM (2013) Changes in the properties of normal human red blood cells during in vivo aging. Am J Hematol 88:44–51PubMedCrossRefGoogle Scholar
  47. 47.
    Wilflingseder D, Banki Z, Garcia E, Pruenster M, Pfister G, Muellauer B, Nikolic DS, Gassner C, Ammann CG, Dierich MP, Piguet V, Stoiber H (2007) IgG opsonization of HIV impedes provirus formation in and infection of dendritic cells and subsequent long-term transfer to T cells. J Immunol 178:7840PubMedCrossRefGoogle Scholar
  48. 48.
    Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D, Cai S, Photos P, Ahmed F (2007) Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci 32:838–857PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265PubMedCrossRefGoogle Scholar
  50. 50.
    Rettig MP, Low PS, Gimm JA, Mohandas N, Wang J, Christian JA (1999) Evaluation of biochemical changes during in vivo erythrocyte senescence in the dog. Blood 93:376–384PubMedGoogle Scholar
  51. 51.
    Sosale NG, Rouhiparkouhi T, Bradshaw AM, Dimova R, Lipowsky R, Discher DE (2015) Cell rigidity and shape override CD47’s “self”-signaling in phagocytosis by hyperactivating myosin-II. Blood 125:542–552PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    JK A, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, Garratty G (2007) Antibody against poly (ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110:103–111CrossRefGoogle Scholar
  53. 53.
    Cox D, Greenberg S (2001) Phagocytic signaling strategies. Fc (gamma) receptor-mediated phagocytosis as a model system. Semin Immunol 13:339–345PubMedCrossRefGoogle Scholar
  54. 54.
    Greenberg S, Chang P, Silverstein SV (1994) Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J Biol Chem 269:3897–3902PubMedGoogle Scholar
  55. 55.
    Aderem A, Underhill BM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623PubMedCrossRefGoogle Scholar
  56. 56.
    Wolfenson H, Bershadsky A, Henis YI, Geiger B (2011) Actomyosin-generated tension controls the molecular kinetics of focal adhesions. J Cell Sci 124:1425–1432PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Raab M, Swift J, Dingal D, Shah P, Shin JW, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199:669–683PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tsai RK, Discher DE (2008) Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol 180:989–1003PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tsai RK, Rodriguez PL, Discher DE (2010) Self inhibition of phagocytosis: The affinity of ‘marker of self’ CD47 for SIRP alpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis 45:67–74PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Murata Y, Saito Y, Kaneko T, Kotani T, Kaneko Y, Ohnishi H, Matozaki T (2014) Autoimmune animal models in the analysis of the CD47-SIRP alpha signaling pathway. Methods 65:254–259PubMedCrossRefGoogle Scholar
  61. 61.
    Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O, Matozaki T (2005) Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 174:2004–2011PubMedCrossRefGoogle Scholar
  62. 62.
    Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP (2000) Role of CD47 as a marker of self on red blood cells. Science 288:2051–2054PubMedCrossRefGoogle Scholar
  63. 63.
    Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PØ, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109:6662PubMedCrossRefGoogle Scholar
  64. 64.
    Horrigan SK (2017) Replication study: the CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. eLife 6:e18173.  https://doi.org/10.7554/eLife.18173 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Alvey CM, Spinler KR, Irianto J, Pfeifer CR, Hayes B, Xia Y, Cho S, Dingal PCPD, Hsu J, Smith L, Tewari M, Discher DE (2017 July 24) SIRPA-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors. Curr Biol 27(14):2065–2077PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bentley AA, Adams JC (2010) The evolution of thrombospondins and their ligand-binding activities. Mol Biol Evol 9:2187–2197CrossRefGoogle Scholar
  67. 67.
    Oldenborg P-A, Gresham HD, Chen Y, Izui S, Lindberg FP (2002) Lethal autoimmune hemolytic anemia in CD47-deficient nonobese diabetic (NOD) mice. Blood 99:3500–3504PubMedCrossRefGoogle Scholar
  68. 68.
    Subramanian S, Parthasarathy R, Sen S, Boder ET, Discher DE (2006) Species- and cell type-specific interactions between CD47 and human SIRPalpha. Blood 107:2548–2556PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kwong LS, Brown MH, Barclay AN, Hatherley D (2014) Signal-regulatory protein alpha from the NOD mouse binds human CD47 with an exceptionally high affinity—implications for engraftment of human cells. Immunology 143:61–67PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Soto-Pantoja DR, Miller TW, Frazier WA, Roberts DD (2012) Inhibitory signaling through signal regulatory protein-alpha is not sufficient to explain the antitumor activities of CD47 antibodies. Proc Natl Acad Sci USA 109:2842–2842CrossRefGoogle Scholar
  71. 71.
    Zhao XW, Matlung HL, Kuijpers TW, van den Berg TK (2012) On the mechanism of CD47 targeting in cancer. Proc Natl Acad Sci USA 109:2843–2843CrossRefGoogle Scholar
  72. 72.
    SB W, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PØ, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109(17):6662–6667CrossRefGoogle Scholar
  73. 73.
    Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lindberg FP, Lublin DM, Telen MJ, Veile RA, Miller YE, Donis-Keller H, Brown EJ (1994) Rh-related antigen CD47 is the signal-transducer integrin-associated protein. J Biol Chem 269:1567–1570PubMedGoogle Scholar
  75. 75.
    Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334PubMedCrossRefGoogle Scholar
  76. 76.
    Arfsten J, Leupold S, Bradtmoeller C, Kampen I, Kwade A (2010) Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae. Colloid Surf B 79:284–290CrossRefGoogle Scholar
  77. 77.
    Beningo KA, Wang YL (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856PubMedGoogle Scholar
  78. 78.
    Lam WA, Rosenbluth MJ, Fletcher DA (2007) Chemotherapy exposure increases leukemia cell stiffness. Blood 109:3505–3508PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783PubMedCrossRefGoogle Scholar
  80. 80.
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, Luft JC, Wu H, Zamboni WC, Wang AZ, Bear JE, DeSimone JM (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci USA 108:586–591PubMedCrossRefGoogle Scholar
  82. 82.
    Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616PubMedCrossRefGoogle Scholar
  83. 83.
    Deplaine G, Safeukui I, Jeddi F, Lacoste F, Brousse V, Perrot S, Biliqui S, Guillotte M, Guitton C, Dokmak S, Aussilhou B, Sauvanet A, Cazals Hatem D, Paye F, Thellier M, Mazier D, Milon G, Mohandas N, Mercereau-Puijalon O, David PH, Buffet PA (2011) The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 117:88–95CrossRefGoogle Scholar
  84. 84.
    Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103:4930–4934PubMedCrossRefGoogle Scholar
  85. 85.
    Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S (2005) Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437(7059):754–758PubMedCrossRefGoogle Scholar
  86. 86.
    Bell AJ, Satchwell TJ, Heesom KJ, Hawley BR, Kupzig S, Hazell M, Mushens R, Herman A, Toye AM (2013) Protein distribution during human erythroblast enucleation in vitro. PLoS One 8(4):e60300PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Buxboim A, Irianto J, Swift J, Athirasala A, Shin JW, Rehfeldt F, Discher DE (2017 Nov 7) Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes. Mol Biol Cell 28(23):3333–3348PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119:1772–1783PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD (2010) Nuclear lamins. Cold Spring Harb Perspect Biol 2:a000547PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC, Athirasala A, Kao YR, Cho S, Harada T, Shin JW, Discher DE (2014) Matrix elasticity regulates lamin-AC phosphorylation and turnover with feedback to actomyosin. Curr Biol 24(16):1909–1917PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Echarri A, Del Pozo MA (2015 Aug 1) Caveolae - mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci 128(15):2747–2758PubMedCrossRefGoogle Scholar
  92. 92.
    Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011 Feb 4) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 144(3):402–413PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dahl KN, Engler AJ, Pajerowski JD, Discher DE (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys J 89:2855–2864PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA 104:15619–15624PubMedCrossRefGoogle Scholar
  95. 95.
    Harada T, Swift J, Irianto J, Shin JW, Spinler KR, Athirasala A, Diegmiller R, Dingal PC, Ivanovska IL, Discher DE (2014) Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol 204:669–682PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Shin JW, Spinler KR, Swift J, Chasis JA, Mohandas N, Discher DE (2013) Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc Natl Acad Sci USA 110(47):18892–18897PubMedCrossRefGoogle Scholar
  97. 97.
    Broers JL, Peeters EA, Kuijpers HJ, Endert J, Bouten CV, Oomens CW, Baaijens FP, Ramaekers FC (2004) Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13:2567–2580PubMedCrossRefGoogle Scholar
  98. 98.
    Irianto J, Pfeifer CR, Bennett RR, Xia Y, Ivanovska IL, Liu AJ, Greenberg RA, Discher DE (2016) Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol Biol Cell 27(25):4011–4020PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Xia Y, Ivanovska IL, Zhu K, Smith L, Irianto J, Pfeifer CR, Alvey CM, Ji J, Liu D, Cho S, Bennett RR, Liu AJ, Greenberg RA, Discher DE (2018 Aug 31) Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J Cell Biol pii: jcb.201711161Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations