Genomic Relationships, Diversity, and Domestication of Ananas Taxa

  • Robert VanBuren
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 22)


Ananas is home to cultivated pineapple (A. comosus var. comosus) and two taxa domesticated for fiber production (var. bracteatus and var. erectifolius). Ananas has undergone numerous taxonomic revisions over the past three centuries because of its leaky reproductive barriers and unclear origins. Early studies on Ananas genetic diversity found clear separation among the current two species and five botanical varieties, but indicated little variation exists within cultivated pineapple. This suggested much of the phenotypic variation in pineapple was due to somatic mutation rather than intense domestication and breeding efforts. The recent completion of the “F153” pineapple reference genome and resequencing of 89 diverse Ananas accessions provided insights into the relationships, diversity, and domestication history of Ananas. Cultivated pineapple has tremendous genetic diversity with extensive admixture and interbreeding. Pineapple was shaped primarily by sexual selection during its domestication, but evidence of asexual selection was also found. These findings challenged the notion of a one-step domestication in clonally propagated species. The wealth of new genomic resources within Ananas will be useful to further study the origins of this group and for establishing advanced pineapple breeding programs.


Ananas Phylogeny Domestication Population genomics Resequencing Clonal propagation 


  1. Aradhya MK, Zee F, Manshardt RM (1994) Isozyme variation in cultivated and wild pineapple. Euphytica 79:87–99CrossRefGoogle Scholar
  2. Bartholomew DP, Hawkins RA, Lopez JA (2012) Hawaii pineapple: the rise and fall of an industry. Hortscience 47:1390–1398Google Scholar
  3. Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34:562–570CrossRefGoogle Scholar
  5. Brewbaker JL, Gorrez DD (1967) Genetics of self-incompatibility in the monocot genera, Ananas (pineapple) and Gasteria. Am J Bot 54:611–616CrossRefGoogle Scholar
  6. Cabral J, Coppens d'Eeckenbrugge G, De Matos A (1998) Introduction of selfing in pineapple breeding. In: III International Pineapple Symposium, vol 529. pp 165–168Google Scholar
  7. Clement CR, de Cristo-Araújo M, Coppens D’Eeckenbrugge G, Alves Pereira A, Picanço-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106CrossRefGoogle Scholar
  8. Coppens d’Eeckenbrugge G, Leal F, Duval M (1997) Germplasm resources of pineapple. Hort Rev 21:133–175Google Scholar
  9. Coppens d'Eeckenbrugge G, Duval MF, Van Miegroet F (1992) Fertility and self-incompatibility in the genus Ananas. In: I International Pineapple Symposium, vol 334. pp 45–52Google Scholar
  10. d’Eeckenbrugge GC, Leal F, Bartholomew D (2003). Morphology, anatomy and taxonomy. In: The pineapple: botany, production and uses. pp 13–32Google Scholar
  11. DeWald M, Moore G, Sherman W (1992) Isozymes in Ananas (pineapple): genetics and usefulness in taxonomy. J Am Soc Hortic Sci 117:491–496Google Scholar
  12. Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249CrossRefGoogle Scholar
  13. Duval M-F, Noyer J-L, Perrier X, d’Eeckenbrugge C, Hamon P (2001) Molecular diversity in pineapple assessed by RFLP markers. Theor Appl Genet 102:83–90CrossRefGoogle Scholar
  14. Duval M-F, Buso GS, Ferreira F, Noyer J-L, d'Eeckenbrugge GC, Hamon P, Ferreira M (2003) Relationships in Ananas and other related genera using chloroplast DNA restriction site variation. Genome 46:990–1004CrossRefGoogle Scholar
  15. Feng S, Tong H, Chen Y, Wang J, Chen Y, Sun G, He J, Wu Y (2013) Development of pineapple microsatellite markers and germplasm genetic diversity analysis. Biomed Res Int 2013:317912PubMedPubMedCentralGoogle Scholar
  16. García M (1988) Etude taxinomique du genre Ananas. In: Utilisation de la variabilité enzymatiqueGoogle Scholar
  17. Givnish TJ, Barfuss MH, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenet Evol 71:55–78CrossRefGoogle Scholar
  18. Kato CY, Nagai C, Moore PH, Zee F, Kim MS, Steiger DL, Ming R (2005) Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers. Genet Resour Crop Evol 51:815–825CrossRefGoogle Scholar
  19. Kole C (2011) Wild crop relatives: genomic and breeding resources. Springer Science & Business Media, CerealsGoogle Scholar
  20. Kumar S, Bink MC, Volz RK, Bus VG, Chagné D (2012) Towards genomic selection in apple (Malus× domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 8:1–14CrossRefGoogle Scholar
  21. Leal F, Coppens G (1996) PineappleGoogle Scholar
  22. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46(11):1220–1226CrossRefGoogle Scholar
  23. Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B (2015) A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol 33:870–884CrossRefGoogle Scholar
  24. Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B (2016) A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol 33:870–884CrossRefGoogle Scholar
  25. McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332CrossRefGoogle Scholar
  26. Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang M-L, Chen J, Biggers E (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442CrossRefGoogle Scholar
  27. Moyle R, Ripi J, Fairbairn DJ, Crowe M, Botella J (2006) The pineapple EST sequencing and microarray project. Acta Hortic 702:47CrossRefGoogle Scholar
  28. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535CrossRefGoogle Scholar
  29. Neuteboom LW, Matsumoto KO, Christopher DA (2009) An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening. Plant Physiol 151:515–527CrossRefGoogle Scholar
  30. Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson JV, Bart RS, Verma J, Buckler ES, Lu F (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet 49:959–963CrossRefGoogle Scholar
  31. Smith LB (1934) Geographical evidence on the lines of evolution in the Bromeliaceae. Bot Jb 66:446–468Google Scholar
  32. Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625PubMedPubMedCentralGoogle Scholar
  33. VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87(6):535–547CrossRefGoogle Scholar
  34. Wöhrmann T, Weising K (2011) In silico mining for simple sequence repeat loci in a pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae. Theor Appl Genet 123:635–647CrossRefGoogle Scholar
  35. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530CrossRefGoogle Scholar
  36. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Robert VanBuren
    • 1
  1. 1.Department of HorticultureMichigan State UniversityEast LansingUSA

Personalised recommendations