MicroRNAs, tasiRNAs, phasiRNAs, and Their Potential Functions in Pineapple

  • Yun Zheng
  • Junqiang Guo
  • Ching Man Wai
  • Ray Ming
  • Ramanjulu Sunkar
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 22)


MicroRNAs are small noncoding RNAs with about 21 nucleotides (nt) that have important functions in both the development and stress responses of plants. Pineapple is an important plant for its agricultural and economical reasons and for its special crassulacean acid metabolism (CAM) photosynthesis system. To better understand the miRNAs and their functions in pineapple, we sequenced three small RNA profiles from flowers, fruits, and leaves, respectively. After analyzing these profiles with bioinformatic methods, 131 conserved miRNAs that could be grouped into 37 families and 16 novel miRNAs were identified. Trans-acting small interfering RNAs (tasiRNAs) are a class of small RNAs that have a different biogenesis pathway but similar functional means by repression of their target genes at different genomic loci. We identified three highly conserved TAS3 loci in pineapple. Recent evidences show that miRNAs also trigger the generations of secondary phased siRNAs (phasiRNAs), from either noncoding genes or coding genes, called as PHAS loci. Our analysis identified 45 PHAS loci encoding 21 nt phasiRNAs and 73 PHAS loci encoding 24 nt phasiRNAs in pineapple. We also predicted the putative targets of the identified miRNAs, tasiRNAs, and phasiRNAs. These results significantly enhance our knowledge of small regulatory RNAs and their potential functions in pineapple.


microRNA Pineapple tasiRNA microRNA target phasiRNA PHAS 



The research was supported in part by two grants (No. 31460295 and 31760314) of National Natural Science Foundation of China ( and a grant (No. SKLGE-1511) of the Open Research Funds of the State Key Laboratory of Genetic Engineering, Fudan University, China, to YZ and a grant of Oklahoma Agricultural Experiment Station ( to RS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


  1. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221CrossRefGoogle Scholar
  2. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159CrossRefGoogle Scholar
  3. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127(3):565–577CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc 57:289–300Google Scholar
  5. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44CrossRefGoogle Scholar
  6. Chen X (2012) Small RNAs in development - insights from plants. Curr Opin Genet Dev 22(4):361–367CrossRefGoogle Scholar
  7. Chen HM, Li YH, Wu SH (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci U S A 104(9):3318–3323CrossRefGoogle Scholar
  8. Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 107(34):15269–15274CrossRefGoogle Scholar
  9. Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17(8):997–1003CrossRefGoogle Scholar
  10. De Paoli E, Dorantes-Acosta A, Zhai J, Accerbi M, Jeong DH, Park S, Meyers BC, Jorgensen RA, Green PJ (2009) Distinct extremely abundant siRNAs associated with cosuppression in petunia. RNA 15(11):1965–1970CrossRefGoogle Scholar
  11. Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25(7):2400–2415CrossRefGoogle Scholar
  12. Fei Q, Li P, Teng C, Meyers BC (2015) Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Plant J 83(3):451–465CrossRefGoogle Scholar
  13. Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R (2016) Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Sci 242:214–223CrossRefGoogle Scholar
  14. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431CrossRefGoogle Scholar
  15. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19(3):926–942CrossRefGoogle Scholar
  16. Jagadeeswaran G, Zheng Y, Li YF, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang W, Sunkar R (2009) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184(1):85–98CrossRefGoogle Scholar
  17. Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R (2012) Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics 13:329CrossRefGoogle Scholar
  18. Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19(8):1429–1440CrossRefGoogle Scholar
  19. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799CrossRefGoogle Scholar
  20. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefGoogle Scholar
  21. Kallman T, Chen J, Gyllenstrand N, Lagercrantz U (2013) A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species. Plant Physiol 162(2):741–754CrossRefGoogle Scholar
  22. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157CrossRefGoogle Scholar
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefGoogle Scholar
  24. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967CrossRefGoogle Scholar
  25. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109(5):1790–1795CrossRefGoogle Scholar
  26. Manavella PA, Koenig D, Weigel D (2012) Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci U S A 109(7):2461–2466CrossRefGoogle Scholar
  27. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190CrossRefGoogle Scholar
  28. Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JA, Cushman JC, Paull RE, Yu Q (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47(12):1435–1442CrossRefGoogle Scholar
  29. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4):357–358PubMedGoogle Scholar
  30. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12(17):1484–1495CrossRefGoogle Scholar
  31. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425CrossRefGoogle Scholar
  32. Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24(3):859–874CrossRefGoogle Scholar
  33. Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C, Chu C, Wang XJ, Green PJ, Meyers BC, Cao X (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69(3):462–474CrossRefGoogle Scholar
  34. Srivastava S, Zheng Y, Kudapa H, Jagadeeswaran G, Hivrale V, Varshney RK, Sunkar R (2015) High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. Plant Sci 235:46–57CrossRefGoogle Scholar
  35. Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37CrossRefGoogle Scholar
  36. Sunkar R, Zhu JK (2007) Micro RNAs and short-interfering RNAs in plants. J Integr Plant Biol 49:817–826CrossRefGoogle Scholar
  37. Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17(5):1397–1411CrossRefGoogle Scholar
  38. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203CrossRefGoogle Scholar
  39. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687CrossRefGoogle Scholar
  40. Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13(6):R47CrossRefGoogle Scholar
  41. Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liu Z (2013) MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in Eudicots. Plant Cell 25(5):1555–1572CrossRefGoogle Scholar
  42. Xia R, Xu J, Arikit S, Meyers BC (2015) Extensive families of miRNAs and PHAS loci in Norway spruce demonstrate the origins of complex phasiRNA networks in seed plants. Mol Biol Evol 32(11):2905–2918CrossRefGoogle Scholar
  43. Xie Z, Allen E, Wilken A, Carrington JC (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A 102(36):12984–12989CrossRefGoogle Scholar
  44. Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV (2015) Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Gene 571(1):71–80CrossRefGoogle Scholar
  45. Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25(23):2540–2553CrossRefGoogle Scholar
  46. Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229(1):161–182CrossRefGoogle Scholar
  47. Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K, Sunkar R (2011) Identification and temporal expression analysis of conserved and novel microRNAs in sorghum. Genomics 98(6):460–468CrossRefGoogle Scholar
  48. Zhang C, Li G, Wang J, Fang J (2012) Identification of trans-acting siRNAs and their regulatory cascades in grapevine. Bioinformatics 28(20):2561–2568CrossRefGoogle Scholar
  49. Zheng Y, Zhang W (2010) Animal microrna target prediction using diverse sequence-specific determinants. J Bioinforma Comput Biol 08(04):763–788CrossRefGoogle Scholar
  50. Zheng Y, Li YF, Sunkar R, Zhang W (2012) SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res 40(4):e28CrossRefGoogle Scholar
  51. Zheng Y, Jagadeeswaran G, Gowdu K, Wang N, Li S, Ming R, Sunkar R (2013) Genome-wide analysis of MicroRNAs in sacred lotus, nelumbo nucifera (Gaertn). Tropical Plant Biology 6(2–3):117–130CrossRefGoogle Scholar
  52. Zheng Y, Wang S, Sunkar R (2014) Genome-wide discovery and analysis of phased small interfering RNAs in Chinese sacred lotus. PLOS ONE 9(12):e113790CrossRefGoogle Scholar
  53. Zhu H, Xia R, Zhao B, An YQ, Dardick CD, Callahan AM, Liu Z (2012) Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol 12:149CrossRefGoogle Scholar
  54. Zhu QH, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I (2013) miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLOS ONE 8(12):e84390CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yun Zheng
    • 1
    • 2
  • Junqiang Guo
    • 2
  • Ching Man Wai
    • 3
  • Ray Ming
    • 3
  • Ramanjulu Sunkar
    • 4
  1. 1.Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
  2. 2.Faculty of Information Engineering and AutomationKunming University of Science and TechnologyKunmingChina
  3. 3.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterUSA

Personalised recommendations