Advertisement

Trends and Prospects for Deep Eutectic Solvents

  • Yizhak Marcus
Chapter

Abstract

The trends regarding the chemical industry for the twenty-first century are along several paths (Sheldon in J R Soc Interface 13:116, 2016) [1]. One trend is the replacement of fossil raw materials (oil, natural gas) or mined minerals with renewable sources, such as biomass or recycled wastes. Sustainable processes for the valorization of waste biomass by its conversion to biofuels (biodiesel) via green processes are currently in the forefront of research.

References

  1. 1.
    Sheldon RA (2016) Engineering a more sustainable world through catalysis and green chemistry. J Roy Soc, Interface 13:116CrossRefGoogle Scholar
  2. 2.
    Al-Dahhan MH (2016) Trends in minimizing and treating industrial wastes for a sustainable environment. Proc Eng 138:347–368CrossRefGoogle Scholar
  3. 3.
    Varma RS (2016) Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain Chem Eng 4:5866–5878CrossRefGoogle Scholar
  4. 4.
    Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramon DJ (2016) Deep eutectic solvents: he organic reaction medium of the century. Eur J Org Chem 2016:612–632CrossRefGoogle Scholar
  5. 5.
    Gadilohar BI, Shankarling GS (2017) Choline based ionic liquids and their application in organic transformations. J Mol Liq 227:234–361CrossRefGoogle Scholar
  6. 6.
    Mota-Morales JD, Sanchez-Leija RJ, Carranza A, Pojman JA, del Monte F, Luna-Barcenas G (2017) Free-radical polymerization of and in deep eutectic solvents: green synthesis of functional materials. Progr Polym Sci 78:139–153CrossRefGoogle Scholar
  7. 7.
    Sheldon RA (2016) Biocatalysis and biomass conversion in alternative reaction media. Chem Eur J 22:12984–12993CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Guajardo N, Müller CR, Schrebler R, Carlesi C, Dominguez de Maria P (2016) Deep eutectic solvents for organocatalysis, biotransformations, and multistep organocatalyst/enzyme combinations. ChemCatChem 6:1020–1027CrossRefGoogle Scholar
  9. 9.
    Khandelwal S, Tailor YK, Kumar M (2016) Deep eutectic solvents (DES) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq 215:345–386CrossRefGoogle Scholar
  10. 10.
    Xu P, Zheng G-W, Zong M-H, Li N, Lou W-Y (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4:34/1–18Google Scholar
  11. 11.
    Troter DZ, Todorovic ZB, Djokic-Stojanovic DR, Stamenkovic OS, Veljkovic VB (2016) Application of ionic liquids and deep eutectic solvents in biodiesel production: a review. Renew Sustain Energy Rev 61:473–500CrossRefGoogle Scholar
  12. 12.
    Tang X, Zuo M, Li Z, Liu H, Xiong C, Zeng X, Sun Y, Hu L, Liu S, Lei T, Lin L (2017) Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSucChem 10:2696–2706CrossRefGoogle Scholar
  13. 13.
    Gertrudes A, Craveiro R, Eltayari Z, Reis RL, Paiva A (2017) How do animals survive extreme temperature amplitudes? The role of natural deep eutectic solvents. ACS Sustain Chem Eng 5:9542–9553CrossRefGoogle Scholar
  14. 14.
    Durand E, Lecomte J, Villeneuve P (2016) From green chemistry to nature: the versatile role of low transition temperature mixtures. Biochimie 120:119–123CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wu X, Du J, Li M, Wu L, Han C, Su F (2018) Recent advances in green reagents for molecularly imprinted polymers. RSC Adv 8:311–327CrossRefGoogle Scholar
  16. 16.
    Juneidi I, Hayyan M, Hashim MA (2018) Intensification of biotransformations using deep eutectic solvents: overview and outlook. Process Biochem 66:33–60CrossRefGoogle Scholar
  17. 17.
    Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Application of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotech Adv 35:105–134CrossRefGoogle Scholar
  18. 18.
    Chirea M, Freitas A, Vasile BS, Ghitulica C, Pereira CM, Silva F (2011) Gold nanowire networks: synthesis, characterization, and catalytic activity. Langmuir 27:3906–3913CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jia H, An J, Guo X, Su C, Zhang L, Zhou H, Xie C (2015) Deep eutectic solvent-assisted growth of gold nanofoams and their excellent catalytic properties. J Mol Liq 212:763–766CrossRefGoogle Scholar
  20. 20.
    Kaur N, Singh V (2017) Current status and future challenges in ionic liquids, functionalized ionic liquids and deep eutectic solvent-mediated synthesis of nanostructured TiO2: a review. New J Chem 41:2844–2868CrossRefGoogle Scholar
  21. 21.
    Hammond OS, Eslava S, Smith AJ, Zhang J, Edler KJ (2017) Microwave-assisted deep eutectic-solvothermal preparation of iron oxide nanoparticles for photoelectrochemical solar water splitting. J Mater Chem A 5:16189–16199CrossRefGoogle Scholar
  22. 22.
    Ge X, Gu C, Wang X, Tu J (2017) Deep eutectic solvents (DESs) = derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. J Mater Chem A 5:8209–8229CrossRefGoogle Scholar
  23. 23.
    Karimi M, Jodaei A, Sadeghinik A, Ransheh MR, Hafshejani TM, Shamsi M, Orand F, Lotfi F (2017) Deep eutectic choline chloride-calcium chloride as all-in-one system for sustainable and one-step synthesis of bioactive fluorapatite nanoparticles. J Fluorine Chem 204:76–83CrossRefGoogle Scholar
  24. 24.
    Mondal D, Sharma M, Wang CH, Yc Lin, Huang HC, Saha A, Nataraj SK, Prasad K (2016) Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst. Green Chem 18:2819–2826CrossRefGoogle Scholar
  25. 25.
    Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567CrossRefGoogle Scholar
  26. 26.
    Joos B, Vranken T, Marchal W, Safari M, Van Bael MK, Hardy AT (2018) Eutectogels: a new class of solid composite electrolytes for Li/Li ion batteries. Chem Mater 30:655–662CrossRefGoogle Scholar
  27. 27.
    Selvanathan V, Azzahari AD, Abd Halim AA, Yahya R (2017) Ternary natural deep eutectic solvent (NADES) infused phthaloyl starch as cost efficient quasi-solid gel polymer electrolyte. Carbohydr Polym 167:210–218CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Espino M, MdlA Fernandez, Gomez FJV (2016) Natural designer solvents for greening analytical chemistry. Trends Anal Chem 76:126–136CrossRefGoogle Scholar
  29. 29.
    Lores H, Romero V, Costas I, Bendicho C, Lavilla I (2017) Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilization of proteins: application to gluten determination by bioassay. Talanta 162:453–459CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Fu N, Lv R, Guo Z, Guo Y, You X, Tang B, Han D, Yan H, Row KH (2017) Environmentally friendly and non-polluting solvent pretreatment of palm samples for polyphenol analysis using choline chloride deep eutectic solvents. J Chromatogr A 1492:1–11CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Panhwara AH, Tuzen M, Kazi TG (2017) Ultrasonic assisted dispersive liquid-liquid microextraction method based on deep eutectic solvent for speciation, preconcentration and determination of selenium species (IV) and (VI) in water and food samples. Talanta 175:345–352Google Scholar
  32. 32.
    Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Application of deep eutectic solvents in analytical chemistry. A review. Microchem J 135:33–38CrossRefGoogle Scholar
  33. 33.
    Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9:25029–25037CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS (2017) New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal Chim Acta 979:1–20CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ruesgas-Ramon M, Figueroa-Espinosa MC, Durand E (2017) Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunitties. J Agric Food Chem 65:3591–3601CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sarmad S, Mikkola J-P, Ji X (2017) Carbon dioxide capture with ionic liquids and deep eutectic solvents: a new generation of sorbents. ChemSusChem 10:324–352CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Zhang H, Wang Y, Zhou Y, Chen J, Wei X, Xu P (2018) Aqueous biphasic systems formed by deep eutectic solvent and new-type salts for the high-performance extraction of pigments. Talanta 181:210–216CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Verma R, Banerjee T (2018) Liquid–liquid extraction of lower alcohols using menthol-based hydrophobic deep eutectic solvent: experiments and COSMO-SAC predictions. Ind Eng Chem Res 57:3371–3381CrossRefGoogle Scholar
  39. 39.
    Florindo C, Romero L, Rintoul O, Branco LC, Marrucho IM (2018) From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eutectic solvents. ACS Sustain Chem Eng 6:3888–3895CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations