Deep Eutectic Solvents in Extraction and Sorption Technology

  • Yizhak MarcusEmail author


Deep eutectic solvents have been used extensively for the extraction and separation of a great variety of substances from diverse media. Several review papers deal with the development of deep eutectic solvents for using them for extraction purposes (Pena-Pereira and Namiesnik in ChemSusChem 7:1784–1800, 2014 [1], Tang et al. in J Separ Sci 38:1053–1064, 2015 [2], Li and Row in J Separ Sci 39:3505–3520, 2016 [3]). Deep eutectic solvents have been tailor-made for extractive purposes by combining choline chloride, betaine, or proline with glycerol or sucrose, forming sustainable and effective extraction media (Jeong et al. in J Chromatogr A 1424:10–17, 2015 [4]).


  1. 1.
    Pena-Pereira F, Namiesnik J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem 7:1784–1800CrossRefPubMedGoogle Scholar
  2. 2.
    Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Separ Sci 38:1053–1064CrossRefGoogle Scholar
  3. 3.
    Li X, Row KH (2016) Development of deep eutectic solvents applied in extraction and separation. J Separ Sci 39:3505–3520CrossRefGoogle Scholar
  4. 4.
    Jeong KM, Lee MS, Nam MW, Zhao J, Jin Y, Lee DK, Kwon SW, Jeong JH, Lee J (2015) Tailoring and recycling of deep eutectic solvents as sustainable and effective extraction media. J Chromatogr A 1424:10–17CrossRefPubMedGoogle Scholar
  5. 5.
    Tang B, Park HE, Row KH (2014) Preparation of chlorocholine chloride/urea deep eutectic solvent-modified silica and an examination of the ion exchange properties of modified silica as a Lewis adduct. Anal Bioanal Chem 406:4309–4313CrossRefPubMedGoogle Scholar
  6. 6.
    Wang X, Li G, Row KH (2017) Graphene and graphene oxide modified by deep eutectic solvents and ionic liquids supported on silica as adsorbents for solid phase extraction. Bull Korean Chem Soc 38:251–257CrossRefGoogle Scholar
  7. 7.
    Farajzadeh MA, Mogaddam MRA, Aghanassab M (2016) Deep eutectic solvent-based dispersive liquid-liquid microextraction. Anal Methods 8:2576–2583CrossRefGoogle Scholar
  8. 8.
    Ji Y, Hou Y, Ren S, Yao C, Wu W (2017) Removal of the neutral oil entrained in deep eutectic solvents using an anti-extraction method. Fuel Proc Technol 160:27–33CrossRefGoogle Scholar
  9. 9.
    Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM (2015) Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain Chem Eng 3:2469–2477CrossRefGoogle Scholar
  10. 10.
    Van Osch DJGP, Zubeir LF, van der Bruihorst A, Rocha MAA, Kroon MC (2015) Hydrophobic deep eutectic solvents as water immiscible extractants. Green Chem 17:4518–4521CrossRefGoogle Scholar
  11. 11.
    Farajzadeh MA, Mogaddam MRA, Feriduni B (2016) Simultaneous synthesis of a deep eutectic solvent and its application in liquid-liquid microextraction of polycyclic aromatic hydrocarbons from aqueous samples. RSC Adv 6:47990–47996CrossRefGoogle Scholar
  12. 12.
    Passos H, Tavares DJP, Ferreira AM, Freire MG, Coutinho JAP (2016) Are aqueous biphasic systems composed of deep eutectic solvents ternary or quaternary systems. ACS Sustain Chem Eng 4:2881–2886CrossRefGoogle Scholar
  13. 13.
    An J, Trujillo-Rodriguez MJ, Pino V, Anderson JL (2017) Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 1500:1–23CrossRefPubMedGoogle Scholar
  14. 14.
    Farias FO, Sosa FHB, Igarashi-Mafra L, Coutinho JAP, Mafra MR (2017) Study of the pseudo-ternary aqueous two-phase systems of deep eutectic solvent (choline chloride: sugars) + K2HPO4 + water. Fluid Phase Equil 448:143–151CrossRefGoogle Scholar
  15. 15.
    Bezold F, Weinberger ME, Minceva M (2017) Assessing solute partitioning in deep eutectic solvent-based biphasic systems using predictive thermodynamic model COSMO-RS. Fluid Phase Equil 437:23–33CrossRefGoogle Scholar
  16. 16.
    Jiang B, Zhang N, Wang B, Yang N, Huang Z, Yang H, Shu Z (2018) Deep eutectic solvent as novel additive for PES membrane with improved performance. Separ Purif Technol 194:239–248CrossRefGoogle Scholar
  17. 17.
    Hadj-Kali MK, Mulyono S, Hizaddin HF, Wazeer I, El-Blidi L, Ali E, Hashim MA, AlNashef IM (2016) Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents. Ind Eng Chem Res 55:8415–8423CrossRefGoogle Scholar
  18. 18.
    Li JJ, Xiao H, Tang XD, Zhou M (2016) Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization. Energy Fuels 30:5411–5418CrossRefGoogle Scholar
  19. 19.
    Al Ani Z, Al Wahaibi T, Mjalli FS, Al Hashmi A, Abu-Jadayil B (2017) Flow of deep eutectic solvent simulated duel in circular channels: part II—extraction of dibenzothiophene. Chem Eng Res Design 119:294–300CrossRefGoogle Scholar
  20. 20.
    Mao C, Zhao R, Li X, Gao X (2017) Trifluoromethanesulfonic acid-based DESs as extractants and catalysts for removal of DBT from model oil. RSC Adv 7:12805–12811CrossRefGoogle Scholar
  21. 21.
    Li C, Li D, Zou S, Li Z, Yin J, Wang A, Cui Y, Yao Z, Zhao Q (2013) Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chem 15:2793–2799CrossRefGoogle Scholar
  22. 22.
    Shu C, Sun T (2016) Extractive desulfurization of gasoline with tetrabutylammonium chloride-based deep eutectic solvents. Separ Sci Technol 51:1336–1343CrossRefGoogle Scholar
  23. 23.
    Zhao H, Baker GA, Wagle DV, Ravula S, Zhang Q (2016) Tuning task-specific ionic liquids for extractive desulfurization of liquid fuel. ACS Sustain Chem Eng 4:4771–4780CrossRefGoogle Scholar
  24. 24.
    Jiang W, Dong L, Liu W, Li H, Yin S, Zhu W, Li H (2017) Biodegradable choline-like deep eutectic solvents for extractive desulfurization of fuels. Chem Eng Proc 115:34–38CrossRefGoogle Scholar
  25. 25.
    Warrag SEE, Rodriguez NR, Nashef I, MvS Annaland, Siepmann JI, Kroon MC, Peters CJ (2017) Separation of thiophene from aliphatic hydrocarbons using tetrahexylammonium-based deep eutectic solvents as extracting agents. J Chem Eng Data 62:2911–2919CrossRefGoogle Scholar
  26. 26.
    Zaid HFM, Kait CP, Mutalib MIA (2017) Extractive deep desulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent. Fuel 192:10–17CrossRefGoogle Scholar
  27. 27.
    Li C, Zhang J, Li Z, Yin J, Cui Y, Liu Y, Yang G (2016) Extraction desulfurization of fuels with ‘metal ions’ based deep eutectic solvents (MDESs). Green Chem 18:3789–3795CrossRefGoogle Scholar
  28. 28.
    Zs Gano, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y (2015) Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design. Chem Eng Proc 93:10–20CrossRefGoogle Scholar
  29. 29.
    Li JJ, Zhou M, Tang XD, Xiao H, Zhang XP (2017) Deep desulfurization of FCC gasoline by extraction with dicarboxylic acid-based deep eutectic solvents. Pet Sci Technol 35:1903–1909CrossRefGoogle Scholar
  30. 30.
    Yin J, Wang J, Li Z, Li D, Yang G, Cui Y, Wang A, Li C (2015) Deep desulfurization of fuels based on an oxidation/extraction process with deep eutectic solvents. Green Chem 17:4552–4559CrossRefGoogle Scholar
  31. 31.
    Zhu W, Wang C, Li H, Wu P, Xun S, Jiang W, Chen Z, Zhao Z, Li H (2015) One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent. Green Chem 17:2464–2472CrossRefGoogle Scholar
  32. 32.
    Liu W, Jiang W, Zhu W, Li H, Guo T, Zhu W, Li H (2016) Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents. J Mol Catal A: Chem 424:261–268CrossRefGoogle Scholar
  33. 33.
    Banisharif F, Dehghani MR, Capel-Sanchez MC, Campos-Martin JM (2017) Desulfurization by extraction and catalytic oxidation using a vanadium substituted Dawson-type emulsion catalyst. Ind Eng Chem Res 56:3839–3852CrossRefGoogle Scholar
  34. 34.
    Mao DF, Zhao RX, Li XP (2017) Phenylpropanoic acid-based DES as efficient extractants and catalysts for the removal of sulfur compounds from oil. Fuel 189:400–407CrossRefGoogle Scholar
  35. 35.
    Guajardo N, Carlesi C, Schrebier R, Morales J (2017) Application of liquid/liquid biobasic oxidations by hydrogen peroxide with ionic liquids or deep eutectic solvents. ChemPlusChem 42:165–176CrossRefGoogle Scholar
  36. 36.
    Ma CF, Zhao RX, Li XP (2017) Propionic acid based deep eutectic solvents: synthesis and ultra-deep oxidative desulfurization activity. RSC Adv 7:42590–42596CrossRefGoogle Scholar
  37. 37.
    Hao L, Wang M, Shan W, Deng C, Ren W, Shi Z, Lü H (2017) L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel. J Hazard Mater 339:216–222CrossRefPubMedGoogle Scholar
  38. 38.
    Jiang W, Dong L, Liu W, Guo T, Li H, Zhang M, Zhu W, Li H (2017) Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents. RSC Adv 7:55318–55325CrossRefGoogle Scholar
  39. 39.
    Yu X, Shi M, Yan S, Wang H, Wang X, Yang W (2017) Designation of choline functionalized polyoxometalates as highly active catalysts in aerobic desulfurization on a combined oxidation and extraction procedure. Fuel 207:13–21CrossRefGoogle Scholar
  40. 40.
    Lü H, Li P, Liu Y, Hao L, Ren W, Zhu W, Deng C, Yang F (2017) Synthesis of a hybrid Anderson-type polyoxymetalate in deep eutectic solvents (DESs) for deep desulfurization of model diesel in ionic liquids (ILs). Chem Eng J 313:1004–1009CrossRefGoogle Scholar
  41. 41.
    Rahma WSA, Mjalli FS, Al-Wahaibi T, Al-Hashmi AA (2017) Polymeric-based deep eutectic solvents for effective desulfurization of liquid fuel at ambient conditions. Chem Eng Res Design 120:271–283CrossRefGoogle Scholar
  42. 42.
    Khezeli T, Daneshfar A (2017) Synthesis and application of magnetic deep eutectic solvents: novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene. Ultrason Sonochem 38:590–597CrossRefPubMedGoogle Scholar
  43. 43.
    Hizaddin HF, Ramalingam A, Hasim MA, Hadj-Kali MKO (2014) Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor like screening model for real fuels. J Chem Eng Data 59:3470–3487CrossRefGoogle Scholar
  44. 44.
    Hizaddin HF, Hadj-Kali MK, Ramalingam A, Hasim MA (2016) Effective denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents. J Chem Thermodyn 95:164–175CrossRefGoogle Scholar
  45. 45.
    Ali MC, Yang Q, Fine AA, Jin W, Zhang Z, Xing H, Ren Q (2016) Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents. Green Chem 18:157–164CrossRefGoogle Scholar
  46. 46.
    Garcia A, Rodriguez-Juan E, Rodriguez-Gurierrez G, Rios JJ, Fernandez-Bolaňos JF (2016) Extraction of phenolic compounds from virgin olive oils by deep eutectic solvents (DESs). Food Chem 97:554–561CrossRefGoogle Scholar
  47. 47.
    Lin Z, Hou Y, Ren S, Ji Y, Yao C, Niu M, Wu W (2016) Phase equilibria of phenol + toluene + quaternary ammonium salts for the separation of phenols from oil with forming deep eutectic solvents. Fluid Phase Equil 429:67–75CrossRefGoogle Scholar
  48. 48.
    Hou Y, Kong J, Ren Y, Ren S, Wu W (2017) Mass transfer dynamics in the separation of phenol from model oil with quaternary ammonium salts via forming deep eutectic solvents. Separ Purif Technol 174:554–560CrossRefGoogle Scholar
  49. 49.
    Yao C, Hou Y, Ren S, Wu W, Zhang K, Ji Y, Liu H (2017) Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents. Chem Eng J 326:620–626CrossRefGoogle Scholar
  50. 50.
    Ruesgas-Ramon M, Figueroa-Espinoza MC, Durand E (2017) Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J Agric Food Chem 65:3591–3601CrossRefPubMedGoogle Scholar
  51. 51.
    Yousefi SM, Shemirani F, Ghorbanian SA (2018) Enhanced headspace single drop microextraction method using deep eutectic solvent based magnetic bucky gels: application to the determination of volatile aromatic hydrocarbons in water and urine samples. J Sep Sci 41:966–974CrossRefPubMedGoogle Scholar
  52. 52.
    Ji Y, Ren S, Yao C, Wu W (2018) Highly efficient extraction of phenolic compounds from oil mixtures by trimethylamine-based dicationic ionic liquids via forming deep eutectic solvents. Fuel Proc Technol 171:183–191CrossRefGoogle Scholar
  53. 53.
    Samarov AA, Smirnov MA, Sokolova MP, Popova EN, Toikka AM (2017) Choline chloride based deep eutectic solvents as extraction media for separation of n-hexane–ethanol mixture. Fluid Phase Equil 448:123–127CrossRefGoogle Scholar
  54. 54.
    Abbott AP, Al-Murshedi AYM, Alshammari OAP, Harris RC, Kareem JH, Qader I, Ryder K (2017) Thermodynamics of phase transfer for polar molecules from alkanes in deep eutectic solvents. Fluid Phase Equil 448:99–104CrossRefGoogle Scholar
  55. 55.
    Naik PK, Dehury P, Paul S, Banerjee T (2016) Evaluation of deep eutectic solvent for the selective extraction of toluene and quinolone at T = 308.15 K and p = 1 bar. Fluid Phase Equil 423:146–155CrossRefGoogle Scholar
  56. 56.
    Naik PK, Dehury P, Paul S, Banerjee T (2017) Liquid liquid equilibria measurements for the extraction of poly aromatic nitrogen hydrocarbons with a low cost deep eutectic solvent: experimental and theoretical insights. J Mol Liq 243:542–552CrossRefGoogle Scholar
  57. 57.
    Maugeri A, Leitner W, Dominguez de Maria P (2012) Practical separation of alcohol-ester mixtures using deep eutectic solvents. Tetrahedr Lett 53:6968–6971CrossRefGoogle Scholar
  58. 58.
    Rodriguez NR, Guell JF, Kroon MC (2016) Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction. J Chem Eng Data 61:865–872CrossRefGoogle Scholar
  59. 59.
    Kareem MA, Mjalli FS, Hashim MA, AlNashef IM (2012) Liquid-liquid equilibria for the ternary system (phosphonium based deep eutectic solvent-benzene-hexane) at different temperatures. Fluid Phase Equil 314:52–59CrossRefGoogle Scholar
  60. 60.
    Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MKO, Bagh FSG, AlNashef IM (2012) Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for potential use in the separation of aromatics from naphtha. Fluid Phase Equil 333:47–54CrossRefGoogle Scholar
  61. 61.
    Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MKO, Bagh FSG, AlNashef IM (2013) Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for potential use in the separation of aromatics from naphtha. J Chem Thermody 65:138–149CrossRefGoogle Scholar
  62. 62.
    Gonzalez ASB, Francisco M, Jimeno G, de Dios SLG, Kroon MC (2013) Liquid-liquid equilibrium data for the systems (LTTM + benzene + hexane) and (LTTM + ethyl acetate + hexane) at different temperatures and atmospheric pressure. Fluid Phase Equil 360:54–62CrossRefGoogle Scholar
  63. 63.
    Hou Y, Li A, Ren S, Wu W (2014) Separation of toluene/alkane mixtures with phosphonium salt based deep eutectic solvents. Fuel Proc Technol 135:90–104Google Scholar
  64. 64.
    Rodriguez NR, Requejo PF, Kroon MC (2015) Aliphatic-aromatic separation using deep eutectic solvents as extracting agents. Ind Eng Chem Res 54:11404–11412CrossRefGoogle Scholar
  65. 65.
    Hizzaddin HF, Sarwono M, Hashim MA, Alnashef IM, Hadj-Kali MK (2015) Coupling the capabilities of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics. J Chem Thermodyn 84:67–75CrossRefGoogle Scholar
  66. 66.
    Wang Y, Hou Y, Wu W, Liu D, Ji Y, Ren S (2016) Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem 18:3089–3097CrossRefGoogle Scholar
  67. 67.
    Sander A, Rogošić M, Silvar A, Žuteg B (2016) Separation of hydrocarbons by means of liquid-liquid extraction with deep eutectic solvents. Solvent Extr Ion Exch 34:86–98CrossRefGoogle Scholar
  68. 68.
    Larriba M, Ayuso M, Navarro P, Delgado-Mellado N, Gonzalez-Miquel M, Garcia J, Rodriguez F (2018) choline chloride-based deep eutectic solvents in the dearomatization of gasolines. ACS Sustain Chem Eng 6:1039–1047CrossRefGoogle Scholar
  69. 69.
    Kurnia KLA, Athira NA, Nur A, Candieiro FJM, Lal B (2016) Phase behavior of ternary mixtures {aliphatic hydrocarbon + Aromatic hydrocarbon + deep eutectic solvent}: a step toward “greener” extraction process. Procedia Eng 148:1340–1345CrossRefGoogle Scholar
  70. 70.
    Hadj-Kali MK, Salleh Z, Ali E, Khan R, Hashim MA (2017) Separation of aromatic and aliphatic hydrocarbons using deep eutectic solvents. A critical review. Fluid Phase Equil 448:152–167CrossRefGoogle Scholar
  71. 71.
    Rodriguez NR, Gerlach T, Scheepers D, Kroon MC, Smirnova I (2017) Experimental determination of the LLE data of systems consisting of hexane + benzene + deep eutectic solvent and prediction using the conductor-like screening model for real solvents. J Chem Thermodyn 104:128–137CrossRefGoogle Scholar
  72. 72.
    Salleh Z, Wazeer I, Mulyono S, El-blidi L, Hashim MA, Hadj-Kali MK (2017) Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents—COSMO-RS screening and experimental validation. J Chem Thermodyn 104:33–44CrossRefGoogle Scholar
  73. 73.
    Oliveira FS, Pereiro AB, Rebelo LPN, Marrucho IM (2013) Deep eutectic solvents as extraction media for azeotropic mixtures. Green Chem 15:1326–1330CrossRefGoogle Scholar
  74. 74.
    Gouveia ASL, Oliveira FS, Kurnia KA, Marrucho IM (2016) Deep eutectic solvents as azeotrope breakers: liquid-liquid extraction and COSMO-RS prediction. ACS Sustain Chem Eng 4:5640–5650CrossRefGoogle Scholar
  75. 75.
    Hadj-Kali MK, Hizaddin HF, Wazeer I, El blidi L, Mulyono S, Hashim MA (2017) Liquid-liquid separation of azeotropic mixtures of ethanol/alkanes using deep eutectic solvents: COSMO-RS prediction and experimental validation. Fluid Phase Equil 448:105–115CrossRefGoogle Scholar
  76. 76.
    Hou Y, Li J, Ren S, Niu M, Wu W (2014) Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents. J Phys Chem B 118:13646–13650CrossRefPubMedGoogle Scholar
  77. 77.
    Mohsenzadeh A, Al-Wahaibi Y, Jibril A, Al-Hajiri R, Shuwa S (2015) The novel use of deep eutectic solvents for enhancing heavy oil recovery. J Pet Sci Eng 130:6–15CrossRefGoogle Scholar
  78. 78.
    Pulati N, Lupinsky A, Miller B, Painter P (2015) Extraction of bitumen from oil sand using deep eutectic ionic liquid analogs. Energy Fuels 26:4927–4935CrossRefGoogle Scholar
  79. 79.
    Jahangiri S, Shahrabad A, Heydari A, Javadian S, Nazemi AH, Jahangiri SM (2017) Choline chloride/monoethytlene glycol deep eutectic solvent as a new asphaltene precipitation inhibitor. Petrol Sci Technol 35:1896–1902CrossRefGoogle Scholar
  80. 80.
    Habibi E, Ghanemi K, Fallah-Mehrjardi M (2013) A novel digestion method based on choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples. Anal Chim Acta 762:61–67CrossRefPubMedGoogle Scholar
  81. 81.
    Ghanemi K, Navidi MA, Fallah-Mehrjardi M, Dadolahi-Sohrab A (2014) Ultra-fast microwave-assisted digestion in choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, Ni, and Zn in marine biological samples. Anal Methods 6:1774–1781CrossRefGoogle Scholar
  82. 82.
    Karimi M, Dadfarnia S, Haji Shabani AM, Tamaddon F, Azadi D (2015) Deep eutectic liquid organic salts as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentration of lead and cadmium in edible oils. Talanta 144:648–654CrossRefPubMedGoogle Scholar
  83. 83.
    Van Osch DJGP, Parmenties D, Dietz CHJT, van den Bruinhorst A, Tuinier R, Kroon MC (2016) Removal of alkali metal and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Commun 52:11987–11990CrossRefGoogle Scholar
  84. 84.
    Yilmaz E, Soylak M (2016) Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation pf chromium(III/VI) in environmental samples. Talanta 160:680–685CrossRefPubMedGoogle Scholar
  85. 85.
    Bağda E, Altundağ H, Tüzen M, Soylak M (2017) A novel selective deep eutectic solvent extraction method for versatile determination of copper in sediment samples by ICP-OES. Bull Environ Contam Toxicol 99:264–269CrossRefPubMedGoogle Scholar
  86. 86.
    Alavi L, Seidi S, Jabbari A, Baheri T (2017) Deep eutectic liquid organic salt as a new solvent for carrier-mediated hollow fiber liquid microextraction of lead from whole blood followed by electrothermal atomic absorption spectrometry. New J Chem 41:7038–7044CrossRefGoogle Scholar
  87. 87.
    Riaňo S, Petranikova M, Onghena B, Vander Hoogerstraete T, Banerjee D, Foreman MRSJ, Ekberg C, Binnemans K (2017) Separation of rare earths and other valuable metals from deep eutectic solvents: a new alternative for the recycling of used NdFeB magnets. RSC Adv 7:32100–32113CrossRefGoogle Scholar
  88. 88.
    Matong JM, Nyaba L, Nomngongo PN (2017) Determination of As, Cr, Mo, Sb, Se, and V in agricultural soil samples by inductively coupled plasma optical emission spectrometry after simple and rapid extraction using choline chloride/oxalic acid deep eutectic solvents. Ecotoxicol Environ Saf 135:152–157CrossRefPubMedGoogle Scholar
  89. 89.
    Panhwar AH, Tuzen M, Kazi TG (2018) Deep eutectic solvent based microextraction method for determination of aluminum in water and food samples: multivariate study. Talanta 178:588–593CrossRefPubMedGoogle Scholar
  90. 90.
    Albler FJ, Bica K, Foreman MRSJ, Holgersson S, Tyumentsev MS (2017) A comparison of two methods of recovering cobalt from a deep eutectic solvent: implications for battery recovery. J Cleaner Prod 167:806–814CrossRefGoogle Scholar
  91. 91.
    Foreman MRSJ, Holgersson S, McPhee C, Tyumentsev MS (2018) Activity coefficients in deep eutectic solvent: implications for the solvent extraction of metals. New J Chem 42:2006–2012CrossRefGoogle Scholar
  92. 92.
    Abbott AP, Collins J, Dalrymple I, Harris RC, Mistry R, Qiu F, Schreier J, Wise WR (2009) Processing of electric arc furnace dust using deep eutectic solvents. Aust J Chem 62:341–347CrossRefGoogle Scholar
  93. 93.
    Ashraf B (2014) Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning. J Hazard Mater 280:191–199CrossRefGoogle Scholar
  94. 94.
    Rozelle PL, Khadilkar AB, Pulati N, Soundarrajan Klima MS, Mosser MM, Miller CE, Pisupati SV (2016) A study on removal of rare earth elements from U/S. coal byproducts by ion exchange. Metall Mater Trans E 3:6–17Google Scholar
  95. 95.
    Huang Y, Feng F, Chen ZG, Wu T, Wang ZH (2018) Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents. Food Chem 244:260–265CrossRefPubMedGoogle Scholar
  96. 96.
    Duan L, Dou LL, Guo L, Li P, Liu EH (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng 4:2405–2411CrossRefGoogle Scholar
  97. 97.
    Wang M, Wang J, Zhiu Y, Zhang M, Xia Q, Bi W, Chen DDY (2017) Ecofriendly mechanochemical extraction of bioactive compounds from plants with deep eutectic solvents. ACS Sustain Chem Eng 5:6297–6303CrossRefGoogle Scholar
  98. 98.
    Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS (2017) New horizons in the extraction of bio-active compounds using deep eutectic solvents: a review. Anal Chim Acta 979:1–23CrossRefPubMedGoogle Scholar
  99. 99.
    Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal Chem 85:6272–6278CrossRefPubMedGoogle Scholar
  100. 100.
    Nam MW, Zhao J, Lee MS, Jeong JH, Lee J (2015) Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chem 17:1718–1727CrossRefGoogle Scholar
  101. 101.
    Koliya F, Bhatt N, Rathod MR, Meena R, Prasad K (2015) Fundamental studies on the feasibility of deep eutectic solvents for the selective partition of glaucarubinone present in the roots of Simarouba glauca. J Separ Sci 38:3170–3175CrossRefGoogle Scholar
  102. 102.
    MdlA Fernandez, Espino M, Gomez FJV, Silva MF (2017) Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem 239:671–678Google Scholar
  103. 103.
    Wang T, Jiao J, Gai QY, Wang P, Guo N, Niu LL (2017) Enhanced and green extraction polyphenols and furanocoumarins from fig (Ficus carica L) leaves using deep eutectic solvents. J Pharmaceut Biomed Anal 145:339–345CrossRefGoogle Scholar
  104. 104.
    Zhu S, Liu D, Zhu X, Su A, Zhang H (2017) Extraction of illegal dyes from red chili peppers with cholinium-based deep eutectic solvents. J Anal Methods Chem 2753752/1-6CrossRefGoogle Scholar
  105. 105.
    Nadia J, Shahbaz K, Ismail M, Farid MM (2018) Approach for polygodial extraction from Pseudowintera colorata (Horopito) leaves using deep eutectic solvents. ACS Sustain Chem Eng 6:862–871CrossRefGoogle Scholar
  106. 106.
    Chen J, Liu M, Wang Q, Du H, Zhang L (2016) Deep eutectic solvent-based microwave assisted method for extraction of hydrophilic and hydrophobic components from radix Salviae miltiorrhizae. Molecules 21:1383/1-13CrossRefGoogle Scholar
  107. 107.
    Zhuang B, Dou LL, Li P, Liu EH (2017) Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. J Pharmaceut Biomed Anal 134:214–219CrossRefGoogle Scholar
  108. 108.
    Jeong KM, Yang M, Jin Y, Kim EM, Ko J, Lee J (2017) Identification of major flavone C-glycosides and their optimized extraction from Cymbidium kanran using deep eutectic solvents. Molecules 22:2006/1-11CrossRefPubMedCentralPubMedGoogle Scholar
  109. 109.
    Wang X, Li G, Row KH (2017) Extraction and determination of quercetin from Ginkgo biloba by DES-based polymer monolithic cartridge. J Chromatogr Sci 55:866–871CrossRefPubMedGoogle Scholar
  110. 110.
    Ma W, Tang B, Row KH (2017) Exploration of a ternary deep eutectic solvent of methyltriphenylphosphonium bromide/chalcone/formic acid for the selective recognition of rutin and quercetin in Herba Artemisiae Scopariae. J Separ Sci 40:3248–3256CrossRefGoogle Scholar
  111. 111.
    Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall’Acqua S (2016) Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules 21:1531/1-11CrossRefGoogle Scholar
  112. 112.
    Huang Y, Feng F, Jiang J, Qjao Y, Wu T, Vogimeier J, Chen ZG (2017) Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem 221:1400–1425CrossRefPubMedGoogle Scholar
  113. 113.
    Deng WW, Zong Y, Xiao YX (2017) Hexafluoroisopropanol-based deep eutectic solvent/salt aqueous two-phase systems for extraction of anthraquinones from Rhei Radix et Rhizoma samples. ACS Sustain Chem Eng 5:4267–4275CrossRefGoogle Scholar
  114. 114.
    Cao J, Yang M, Cao F, Wang J, Su E (2017) Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves. J Clean Prod 152:399–405CrossRefGoogle Scholar
  115. 115.
    Cao J, Yang M, Cao F, Wang J, Su E (2017) Well-designed hydrophobic deep eutectic solvents as green and efficient media for the extraction of artemisinin from Artemisia annua leaves. ACS Sustain Chem Eng 5:3270–3278CrossRefGoogle Scholar
  116. 116.
    Ma W, Row KH (2017) Optimized extraction of bioactive compounds from Herba Artemisiae Scoparie with ionic liquids and deep eutectic solvents. J Liquid Chromatogr 40:459–466CrossRefGoogle Scholar
  117. 117.
    Jeong KM, Ko J, Zhao J, Jin Y, Yoo YJ, Han SY, Lee J (2017) Multi-functioning deep eutectic solvents as extraction and storage media for bioactive products that are readily applicable to cosmetic products. J Clean Prod 151:87–95CrossRefGoogle Scholar
  118. 118.
    Piemontese L, Perna FM, Logrieco A, Capriati V, Solfrizzo M (2017) Deep eutectic solvents as novel and effective extraction media for quantitative determination of ochratoxin A in wheat and derived products. Molecules 22:121/1-9CrossRefPubMedCentralPubMedGoogle Scholar
  119. 119.
    Khezeli T, Daneshfar A, Sahraei R (2017) A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic, and cinnamic acid from olive, almond, sesame, and cinnamon oil. Talanta 150:577–585CrossRefGoogle Scholar
  120. 120.
    Nie J, Yu G, Song Z, Wang X, Li Z, She Y, Lee M (2017) Microwave-assisted deep eutectic solvents extraction coupled with headspace solid-phase microextraction followed by GC-MS for the analysis of volatile compounds from tobacco. Anal Methods 9:856–863CrossRefGoogle Scholar
  121. 121.
    Nugbienyi L, Shishov A, Garmonov S, Moskvin L, Andruch V, Bulatov A (2017) Flow method based on liquid-liquid extraction using deep eutectic solvent for the spectrofluorimetric determination of procainamide in human saliva. Talanta 168:307–312CrossRefGoogle Scholar
  122. 122.
    Liu W, Zhang K, Qin Y, Yi J (2017) A simple and green ultrasonic-assisted liquid-liquid microextration technique based on deep eutectic solvents for the HPLC analysis of sesamol in sesame oils. Anal Methods 9:4184–4189CrossRefGoogle Scholar
  123. 123.
    Florindo C, Branco LC, Marrucho LM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equil 448:135–142CrossRefGoogle Scholar
  124. 124.
    Okumiewska P, Domanska U, Wieckowski M, Mierzejewska J (2017) Recovery of 2-phenylethanol from aqueous solutions of biosynthesis using ionic liquids. Separ Purif Technol 188:530–538CrossRefGoogle Scholar
  125. 125.
    Yousefi SM, Shemirani F, Ghorbanian SA (2017) Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique. Talanta 168:73–81CrossRefPubMedGoogle Scholar
  126. 126.
    Xu K, Wang Y, Li Y, Lin Y, Zhang H, Zhou Y (2016) A novel poly(deep eutectic solvents)-based magnetic silica composite for solid-phase extraction of trypsin. Anal Chim Acta 946:64–72CrossRefPubMedGoogle Scholar
  127. 127.
    Li X, Row KH (2017) Application of deep eutectic solvents in hybrid molecularly imprinted polymers and mesoporous siliceous material for solid-Phase extraction of levoflaxin from green bean extracts. Anal Sci 33:611–617CrossRefPubMedGoogle Scholar
  128. 128.
    Liu L, Tang W, Han D, Row KH, Zhu T (2017) Pipette-tip solid-phase extraction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water. J Separ Sci 40:1887–1895CrossRefGoogle Scholar
  129. 129.
    Kataei MM, Yamini Y, Nazaripour A, Karimi M (2018) Novel generation of deep eutectic solvent as an acceptor phase in three-phase hollow fiber liquid phase microextraction for extraction and preconcentration of steroidal hormones from biological fluids. Talanta 178:473–483CrossRefGoogle Scholar
  130. 130.
    Patsea M, Stefou I, Grigorakis S, Makris DP (2017) Screening of natural sodium acetate-based low transition temperature mixtures (LTTMs) for enhanced extraction of antioxidants and pigments from red vinification solid wastes. Environ Process 4:123–135CrossRefGoogle Scholar
  131. 131.
    Tommasi E, Cravotto G, Galletti P, Grillo G, Mazzotti M, Sacchetti G, Samori C, Tabasso S, Tacchini M, Tagliavini E (2017) Enhanced and selective lipid extraction from the microalgae P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatments. ACS Sustain Chem Eng 5:8316–8322CrossRefGoogle Scholar
  132. 132.
    Yang M, Hong K, Li X, Ge F, Tang Y (2017) Freezing temperature controlled deep eutectic solvent dispersive liquid-liquid microextraction based on solidification of floating organic droplets for rapid determination of benzoylureas residual in water samples with assistance of metallic salt. RSC Adv 7:56528–56536CrossRefGoogle Scholar
  133. 133.
    Zeng Q, Wang Y, Huang Y, Ding A, Chen H, Xu K (2014) Deep eutectic solvents as novel extraction media for protein partitioning. Analyst 139:2565–2575CrossRefPubMedGoogle Scholar
  134. 134.
    Xu K, Wang Y, Huang Y, Li N, Wen Q (2015) A green deep eutectic solvents-based two-phase system for protein extraction. Anal Chim Acta 864:9–20CrossRefPubMedGoogle Scholar
  135. 135.
    Li N, Wang Y, Xu K, Huang Y, Wen Q, Ding X (2016) Development of green betaine-based deep eutectic solvent aqueous two-phase system for extraction of protein. Talanta 152:23–32CrossRefPubMedGoogle Scholar
  136. 136.
    Lores H, Romero V, Cpstas I, Bendieho C, Lavilla I (2017) Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilization of proteins: application to gluten determination by immunoassay. Talanta 162:453–459CrossRefPubMedGoogle Scholar
  137. 137.
    Li N, Wang Y, Xu K, Wen Q, Ding X, Zhang H, Yang Q (2016) High performance of deep eutectic solvent based aqueous bi-phasic system for the extraction of DNA. RSC Adv 6:84406–84414CrossRefGoogle Scholar
  138. 138.
    Zhang H, Wang Y, Zhou Y, Xu K, Li N, Wen Q, Yang Q (2017) Aqueous biphasic systems containing PEG-based deep eutectic solvents for high performance partitioning of RNA. Talanta 170:266–274CrossRefPubMedGoogle Scholar
  139. 139.
    Huang Y, Wang Y, Pan Q, Wang Y, Ding X, Xu K, Li N (2015) Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein. Anal Chim Acta 877:90–99CrossRefPubMedGoogle Scholar
  140. 140.
    Xu K, Wang Y, Ding X, Huang Y, Li N, Wen Q (2016) Magnetic solid phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles. Talanta 148:153–162CrossRefPubMedGoogle Scholar
  141. 141.
    Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, CambridgeGoogle Scholar
  142. 142.
    Abu-Zahra MRM, Niederer JPM, Feron PHM, Versteeg GF (2007) CO2 capture from power plants. Part II. A parametric study of their economical performance based on mono-ethanolamine. Int J Greenhouse Gas Control 1:135–142CrossRefGoogle Scholar
  143. 143.
    Anthony JL, Aki SN, Maginn EJ, Brennecke JF (2004) Feasibility of using ionic liquids for carbon dioxide capture. Int J Environ Technol Manag 4:105–115CrossRefGoogle Scholar
  144. 145.
    Jessop PG (2011) Searching for green solvents. Green Chem 13:1391–1398CrossRefGoogle Scholar
  145. 145.
    Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872CrossRefGoogle Scholar
  146. 146.
    Li X, Hou M, Han B, Wang X, Zou L (2008) Solubility of CO2 in a choline chloride + urea eutectic mixture. J Chem Eng Data 53:548–550CrossRefGoogle Scholar
  147. 147.
    Ali E, Hadj-Kali MK, Mulyono S, Alnashef I (2016) Analysis of operating conditions for CO2 capturing process using deep eutectic solvents. Int J Greenhouse Gas Control 47:342–350CrossRefGoogle Scholar
  148. 148.
    Yang D, Hou M, Ning H, Zhang J, Ma J, Yang G, Han B (2013) Efficient SO2 absorption by renewable choline chloride-glycerol deep eutectic solvents. Green Chem 15:2261–2265CrossRefGoogle Scholar
  149. 149.
    Altamash T, Atilhan M, Aliyan A, Ulla R, Nasser M, Aoaricio S (2017) Rheological, thermodynamic, and gas solubility properties of phenylacetic acid-based deep eutectic solvents. Chen Eng Technol 40:778–790CrossRefGoogle Scholar
  150. 150.
    Li Y, Ali MC, Yang Q, Zhang Z, Bao Z, Su B, Xing H, Ren Q (2017) Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3. ChemSusChem 10:3368–3377CrossRefPubMedGoogle Scholar
  151. 151.
    Kamgar A, Mohsenpour S, Esmaeilzadeh F (2017) Solubility prediction of CO2, CH4, H2, CO, and N2 in choline chloride/urea as a eutectic solvent using NRTL and COSMO-RS models. J Mol Liq 247:70–74CrossRefGoogle Scholar
  152. 152.
    Altamash T, Nasser MS, Elhamarna Y, Magzoub M, Ulla R, Anaya B, Aparicio S, Atilhan M (2017) Gas solubility and rheological behavior of natural deep eutectic solvents (NADES) via combined experimental and molecular simulation techniques. ChemistrySelect 2:7278–7295CrossRefGoogle Scholar
  153. 153.
    Korotkevich A, Firana DS, Padua AAH, Kirchner B (2017) Ab initio molecular dynamics simulations of SO2 solvation in choline chloride/glycerol deep eutectic solvent. Fluid Phase Equil 448:59–68CrossRefGoogle Scholar
  154. 154.
    Gn Wang, Dai Y, Hu XB, Xiao F, Wu YT, Zhang ZB, Zhou Z (2012) Novel ionic liquid analogs formed by triethylbutylammonium carboxylate-water mixtures for CO2 absorption. J Mol Liq 168:17–20CrossRefGoogle Scholar
  155. 155.
    Mirza N, Mumford K, Wu Y, Mazhar S, Kentish S, Stevens G (2017) Improved eutectic based solvents for capturing carbon dioxide. Energy Procedia 114:827–833CrossRefGoogle Scholar
  156. 156.
    Xie Y, Dong H, Zhang S, Lu X, Ji X (2014) Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea. J Chem Eng Data 59:3344–3352CrossRefGoogle Scholar
  157. 157.
    Su WC, Wong DSH, Li MH (2009) Effect of water on solubility of carbon dioxide in (aminomethanamide + 2-hydroxy-N,N,N-trimethylethaneamminium chloride). J Chem Eng Data 54:1951–2955CrossRefGoogle Scholar
  158. 158.
    Lin CM, Leron RB, Caparanga AR, Li MH (2014) Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems. J Chem Thermodyn 68:216–220CrossRefGoogle Scholar
  159. 159.
    Sun S, Niu Y, Xu Q, Sun Z, Wei X (2015) Efficient SO2 absorption by four kinds of deep eutectic solvents based on choline chloride. Ind Eng Chem Res 54:8019–8024CrossRefGoogle Scholar
  160. 160.
    Liu B, Zhao J, Wei F (2013) Characterization of caprolactam based eutectic ionic liquids and their application in SO2 sorption. J Mol Liq 180:19–25CrossRefGoogle Scholar
  161. 161.
    Zhang K, Ren S, Hou Y, Wu W (2017) Efficient sorption of SO2 with low partial pressures by environmentally benign functional deep eutectic solvents. J Hazard Mater 324:457–463CrossRefPubMedGoogle Scholar
  162. 162.
    Ali E, Hasdj-Kali MK, Mulyono S, Alnashef I, Fakeeha A, Mjalli F, Hayyan A (2014) Solubility of CO2 in deep eutectic solvents: experiments and modelling using the Peng-Robinson equation of state. Chem Eng Res Des 92:1898–1906CrossRefGoogle Scholar
  163. 163.
    Mirza NF, Nicholas NJ, Wu Y, Mumford KA, Kentish SE, Stevens GW (2015) Experiments and thermodynamic modeling of the solubility of carbon dioxide in three different deep eutectic solvents (DESs). J Chem Eng Data 60(3246):3253Google Scholar
  164. 164.
    Zubeir LF, Held C, Sadowski G, Kroon MC (2016) PC-SAFT modeling of CO2 solubilities in deep eutectic solvents. J Phys Chem B 120:2300–2310CrossRefPubMedGoogle Scholar
  165. 165.
    Dietz CHJT, van Osch DJGP, Kroon MC, Sadowski G, van Sint Annaland M, Gallucci F, Zubeir LF, Held C (2017) PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents. Fluid Phase Equil 448:94–98CrossRefGoogle Scholar
  166. 166.
    Garcia G, Atilhan M, Aparicio S (2015) Interfacial properties of deep eutectic solvents regarding to CO2 capturer. J Phys Chem C 119:21413–21425CrossRefGoogle Scholar
  167. 167.
    Ullah R, Atilhan M, Amaya B, Khraisheh M, Garcia G, Elkhattat A, Tariq M, Aparicio S (2015) A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches. Phys Chem Chem Phys 17:20941–20960CrossRefPubMedGoogle Scholar
  168. 168.
    Haghbakhsh R, Raeissi S (2018) Modeling vapor-liquid equilibria of mixtures of SO2 and deep eutectic solvents using CPA-NRTL and CPA-UNIQUAC models. J Mol Liq 250:259–268CrossRefGoogle Scholar
  169. 169.
    Garcia G, Aparicio S, Ulla R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644CrossRefGoogle Scholar
  170. 170.
    Marcus Y (2018) Gas solubility in deep eutectic solvents. Monatsh Chem 149:211–217CrossRefGoogle Scholar
  171. 171.
    Sarmad S, Mikkola JP, Ji X (2017) Carbon dioxide capture with ionic liquids and deep eutectic solvents: a new generation of sorbents. ChemSusChem 10:324–352CrossRefPubMedGoogle Scholar
  172. 172.
    Trivedi TJ, Lee JH, Lee HJ, Jeong YK, Choi JW (2016) Deep eutectic solvents as attractive media for CO2 capture. Green Chem 18:2834–2842CrossRefGoogle Scholar
  173. 173.
    Sarmad S, Xie Y, Mikkola J-P, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–301CrossRefGoogle Scholar
  174. 174.
    Leron RB, Caparanga A, Li MH (2013) Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15–343.15 K at moderate pressures. J Taiwan Int Chem Eng 44:879–885CrossRefGoogle Scholar
  175. 175.
    Chen Y, Ai N, Li G, Shan H, Cui Y, Deng D (2014) Solubility of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols. J Chem Eng Data 59:1247–1253CrossRefGoogle Scholar
  176. 176.
    Leron RB, Li MH (2013) Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent. Thermochim Acta 551:14–19CrossRefGoogle Scholar
  177. 177.
    Mulia K, Putri S, Krisanti E, Nassruddin (2017) Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture. Int Conf Chem Chem Proc Eng 1823:02022-1/14Google Scholar
  178. 178.
    Li G, Deng D, Chen Y, Shan H, Ai N (2014) Solubilities and thermodynamic properties of CO2 in choline chloride based deep eutectic solvents. J Chem Thermodyn 75:58–62CrossRefGoogle Scholar
  179. 179.
    Leron RB, Li MH (2013) Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and glycerol at moderate pressures. J Chem Thermodyn 57:131–136CrossRefGoogle Scholar
  180. 180.
    Lu M, Han G, Jiang Y, Zhang X, Deng D, Ai N (2015) Solubility of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride. J Chem Thermodyn 68:72–77CrossRefGoogle Scholar
  181. 181.
    Francisco M, van den Bruinhorst A, Zubeir LF, Peters CJ, Kroon MC (2013) A new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid: characterization as solvent for CO2 capture. Fluid Phase Equil 340:77–84CrossRefGoogle Scholar
  182. 182.
    Li X, Hou M, Zhang Z, Han B, Yang G, Wang X, Zou L (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10:879–884CrossRefGoogle Scholar
  183. 183.
    Zubeir LF, Lacroix MHM, Kroon MC (2014) Low transition temperature mixtures as innovative and sustainable CO2 capture solvents. J Phys Chem B 118:14429–14441CrossRefPubMedGoogle Scholar
  184. 184.
    Deng D, Jiang Y, Liu X, Zhang Z, Ai N (2016) Investigation of solubilities of carbon dioxide in five levulinic acid-based deep eutectic solvents and their thermodynamic properties. J Chem Thermodyn 103:212–217CrossRefGoogle Scholar
  185. 185.
    Deng D, Han G, Jiang Y (2015) Investigation of a deep eutectic solvent formed by levulinic acid with quaternary ammonium salts as an efficient SO2 absorbent. New J Chem 39:8158–8264CrossRefGoogle Scholar
  186. 186.
    Guo B, Duan E, Ren A, Wang Y, Liu H (2010) Solubility of SO2 in caprolactam tetrabutyl- ammonium bromide ionic liquids. J Chem Eng Data 55:1398–1401CrossRefGoogle Scholar
  187. 187.
    Zhang K, Ren S, Yang X, Hou Y, Wu W, Bao Y (2017) Efficient absorption of low-concentration SO2 in simulated flue gas by functional deep eutectic solvents based on imidazole and its derivatives. Chem Eng J 327:128–134CrossRefGoogle Scholar
  188. 188.
    Yang D, Han Y, Qi H, Wang Y, Dai S (2017) Efficient absorption pf SO2 by EmimCl-EG eutectic solvents. ACS Sustain Chem Eng 5:6382–6386CrossRefGoogle Scholar
  189. 189.
    Liu B, Wei F, Zhao J, Wang Y (2013) Characterization of amide-thiocyanates eutectic ionic liquids and their application in SO2 absorption. RSC Adv 3:2470–2476CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations