Advertisement

Properties of Deep Eutectic Solvents

  • Yizhak Marcus
Chapter

Abstract

The practical application of deep eutectic solvents naturally depends on their properties, including their phase diagrams, thermodynamic properties, volumetric properties, transport properties, electrochemical properties, optical and spectroscopic properties, their chemical properties (polarity) and structures, and their toxicity and ecological behavior. These are dealt with in turn in this chapter.

References

  1. 1.
    Fernandez L, Silva L, Martins MAR, Ferreira O, Ortega J, Pinho SP, Coutinho JAP (2017) Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibrium data. Fluid Phase Equil 448:9–14CrossRefGoogle Scholar
  2. 2.
    Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003:70–71CrossRefGoogle Scholar
  3. 3.
    Chemat F, Anjum H, Shariff AM, Kumar P, Murugesan T (2016) Thermal and physical properties of (choline chloride + urea + l-arginine) deep eutectic solvents. J Mol Liq 218:301–308CrossRefGoogle Scholar
  4. 4.
    Morrison HG, Sun CC, Neervannan S (2009) Cheracterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm 378:136–139PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kim KS, Park BY (2015) Differential scanning calorimetric study on binary mixtures of choline chloride with urea or 1,3-dimethylurea. J Chem Eng Jpn 48:881–884CrossRefGoogle Scholar
  6. 6.
    Meng X, Ballerat-Busserolles K, Husson P, Andanson JM (2016) Impact of water on the melting temperature of urea + choline chloride deep eutectic solvent. New J Chem 40:4492–4499CrossRefGoogle Scholar
  7. 7.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Separ Purif Technol 84:216–222CrossRefGoogle Scholar
  8. 8.
    Lopez-Porfiri P, Brennecke JF, Gonzalez-Miquel M (2016) Excess molar enthalpies of deep eutectic solvents (DES) composed of quaternary ammonium salts and glycerol and ethylene glycol. J Chem Eng Data 61:4245–4251CrossRefGoogle Scholar
  9. 9.
    Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872CrossRefGoogle Scholar
  10. 10.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Guo W, Hou Y, Ren S, TianS WuW (2013) formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data 58:866–872CrossRefGoogle Scholar
  12. 12.
    Mjalli FS, Naser J, Jibril B, Alizadeh V, Gano Z (2014) Tetrabutylammonium chloride based liquid analogues and their physical properties. J Chem Eng Data 59:2242–2251CrossRefGoogle Scholar
  13. 13.
    Qin L, Li J, Cheng H, Chen L, Qi Z, Yuan W (2017) Association extraction for vitamin E recovery from deodorizer distillate by in situ formation of deep eutectic solvent. AIChE J 63:2212–2220CrossRefGoogle Scholar
  14. 14.
    Domanska U, Okuniewska P, Markowska A (2016) Phase equilibrium in binary systems of ionic liquids or deep eutectic solvents with 2-phenylethanol (PES) or water. Fluid Phase Equil 424:68–78CrossRefGoogle Scholar
  15. 15.
    Linke WF, Seidell A (1965) Solubilities of inorganic and metal-organic compounds, vol II, 4th edn. WashingtonGoogle Scholar
  16. 16.
    Krigintsev AN, Trushnikova LN, Lavrent’eva VG (1972) Rastvorimost’ Neorganicheskikh Veshchestv v Vode. Khimiya, LeningradGoogle Scholar
  17. 17.
    Marcus Y (2017) Aqueous salt hydrates: unconventional deep eutectic solvents. ACS Sustain Chem Eng 5:11780–11787CrossRefGoogle Scholar
  18. 18.
    Pestova ON, Myund LA, Khripun MK, Prigaro AV (2005) Polythermal study of the systems M(ClO4)2–H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russ J Appl Chem 78:409–413CrossRefGoogle Scholar
  19. 19.
    Aissaoui T, AlNashef IM, Benguerba Y (2016) Dehydration of natural gas using choline chloride based deep eutectic solvents: COSMO-RS prediction. J Nat Gas Sci Eng 30:571–577CrossRefGoogle Scholar
  20. 20.
    Shahbaz K, Mjalli FS, Vakili-Nezhaad G, AlNashef IM, Asadov A, Farid MM (2016) Thermogravimetric measurement of deep eutectic solvents vapor pressure. J Mol Liq 222:61–66CrossRefGoogle Scholar
  21. 21.
    Mirza NR, Nicholas NJ, Wu Y, Kentish S, Stevens GW (2015) Estimation of normal boiling temperatures, critical properties, and acentric factors of deep eutectic solvents. J Chem Eng Data 60:1844–1854CrossRefGoogle Scholar
  22. 22.
    Valderrama JO, Robles PA (2007) Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind Eng Chem Res 46:1338–1344CrossRefGoogle Scholar
  23. 23.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Prediction of deep eutectic solvents densities at different temperatures. Thermochim Acta 515:67–72CrossRefGoogle Scholar
  24. 24.
    Marcus Y (2018) Estimation of the critical temperatures of some more deep eutectic solvents from their surface tensions. Adv Mater Sci Eng, 5749479-1/3Google Scholar
  25. 25.
    Mjalli FS, Vakili-Nezhaad G, Shahbaz K, AlNashef IM (2014) Application of Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues. Thermochim Acta 575:40–44CrossRefGoogle Scholar
  26. 26.
    Della Gatta G, Ferro D (1987) Enthalpies of fusion and solid-to-solid transition, entropies of fusion for urea and twelve alkylureas. Thermochim Acta 122:143–152CrossRefGoogle Scholar
  27. 27.
    Naser J, Mjalli FS, Gano Z (2016) Molar heat capacity of type III deep eutectic solvents. J Chem Eng Data 61:1608–1615CrossRefGoogle Scholar
  28. 28.
    Leron TB, Li MH (2012) Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water. Thermochim Acta 530:52–57CrossRefGoogle Scholar
  29. 29.
    Siongco KR, Leron RB, Caparanga AR, Li MH (2013) Molar heat capacities and electrical conductivities of two ammonium-based deep eutectic solvents and their aqueous solutions. Thermochim Acta 566:50–56CrossRefGoogle Scholar
  30. 30.
    Perkins SL, Painter P, Colina CM (2014) Experimental and computational studies of choline chloride-based deep eutectic solvents. J Chem Eng Data 59:3652–3662CrossRefGoogle Scholar
  31. 31.
    Hard S, Johansson K (1977) The surface tension of concentrated aqueous 1:1 electrolytes measured by means of Wilhelmy and laser light scattering methods. J Colloid Interface Sci 60:467–472CrossRefGoogle Scholar
  32. 32.
    Abramzon AA, Gaukhberg RD (1993) Surface tension of salt solutions. Russ J Appl Chem 66:1473–1480Google Scholar
  33. 33.
    Abramzon AA, Gaukhberg RD (1993) Surface tension of salt solutions. Russ J Appl Chem 66:1665–1674Google Scholar
  34. 34.
    Naser J, Mjalli FS, Gano ZS (2017) Molar heat capacity of tetrabutylammonium chloride-based deep eutectic solvents and their binary water mixtures. Asia Pacific J Chem Eng 12:938–947CrossRefGoogle Scholar
  35. 35.
    Jarvis NL, Scheiman MA (1968) Surface potentials of aqueous electrolyte solutions. J Phys Chem 72:74–78CrossRefGoogle Scholar
  36. 36.
    Wahab A, Mahiuddin S (2004) Isentropic compressibility, electrical conductivity, shear relaxation times, surface tension, and Raman spectra of aqueous zinc nitrate solutions. J Chem Eng Data 49:126–132CrossRefGoogle Scholar
  37. 37.
    Garcia G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644CrossRefGoogle Scholar
  38. 38.
    Germani R, Orlandini M, Tiecco M, Del Giaccp T (2017) Novel low viscous, green and amphiphilic N-oxide/phenylacetic acid based deep eutectic solvents. J Mol Liq 240:233–239CrossRefGoogle Scholar
  39. 39.
    Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM (2012) Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques. Thermochim Acta 527:59–66CrossRefGoogle Scholar
  40. 40.
    Mjalli FS, Shahbaz K, AlNashef IM (2015) Modified Rackett equation for modelling the molar volume of deep eutectic solvents. Thermochim Acta 614:185–190CrossRefGoogle Scholar
  41. 41.
    Apelblat A (2016) A new two parameter equation for correlation and prediction of densities as a function of concentration and temperature in binary aqueous solutions. J Mol Liq 219:313–331CrossRefGoogle Scholar
  42. 42.
    Doan TH, Sangster J (1981) Viscosities of concentrated aqueous solutions of some 1:1, 2:1, and 3:1 nitrates at 25°C. J Chem Eng Data 26:141–144CrossRefGoogle Scholar
  43. 43.
    Wahab A, Mahiuddin S, Hefter G, Kunz W (2006) Densities, ultrasonic velocities, viscosities, and electrical conductivities of aqueous solutions of Mg(OAc)2 and Mg(NO3)2. J Chem Eng Data 51:1609–1616CrossRefGoogle Scholar
  44. 44.
    Xu Y, Hepler LG (1995) Calorimetric investigations of crystalline, molten, and supercooled Ca(NO3)2∙H2O and of concentrated Ca(NO3)2-(aq). J Chem Thermodyn 25:91–97CrossRefGoogle Scholar
  45. 45.
    Marcus Y (2013) The internal pressure of liquids and solutions. Chem Rev 113:6536–6551PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Marcus Y (2016) Ionic liquid properties. Springer, Switzerland Chapter 6CrossRefGoogle Scholar
  47. 47.
    Sarmad S, Xie Y, Mikkola JP, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–321CrossRefGoogle Scholar
  48. 48.
    Florindo C, Oliviera FS, Rebelo LPN, Fernandes AM, Marrucho IM (2014) Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chem Eng 2:2416–2425CrossRefGoogle Scholar
  49. 49.
    Mirza NR, Nicholas NJ, Wu Y, Smith KH, Kentish SE, Stevens GW (2017) Viscosities and carbon dioxide solubilities of guanidinium carbonate and malic acid-based eutectic solvents. J Chem Eng Data 62:348–354CrossRefGoogle Scholar
  50. 50.
    Mjalli FS, Naser J (2015) Viscosity model for choline-based deep eutectic solvents. Asia Pacific J Chem Eng 10:273–281CrossRefGoogle Scholar
  51. 51.
    Haghbakhsh R, Parvaneh K, Raeissi S, Shariati A (2018) A general viscosity model for deep eutectic solvents: the free volume theory coupled with association equations of state. Fluid Phase Equil 470:193–202CrossRefGoogle Scholar
  52. 52.
    Jenkins HBD, Marcus Y (1995) Ionic B-coefficients in solution. Chem Rev 95:2695–2726CrossRefGoogle Scholar
  53. 53.
    Ambrose JH, Moynihan CT, Macedo PB (1972) The temperature dependence of viscosity and conductivity of concentrated aqueous calcium nitrate solutions. J Electrochem Soc 119:192–198CrossRefGoogle Scholar
  54. 54.
    Avd Bruinhorst, Spiriouni T, Hill JR, Kroon MC (2018) Experimental and molecular modeling evaluation of the physicochemical properties of proline-based deep eutectic solvents. J Phys Chem B 122:369–379CrossRefGoogle Scholar
  55. 55.
    Ding M, Cresce Av XuK (2017) Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte. J Phys Chem C 121:2149–2153CrossRefGoogle Scholar
  56. 56.
    Yim CH, Tam J, Soboleski H, Abu-Lebdeh Y (2017) On the correlation between the free volume, phase diagram and ionic conductivity of aqueous and non-aqueous lithium battery electrolyte solutions over a wide concentration range. J Electrochem Soc 164:A1002–A1011CrossRefGoogle Scholar
  57. 57.
    Bahadori L, Chakrabarti MH, Mjalli FS, AlNashef IM, Abdul Manan NS, Hashim MA (2013) Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim Acta 113:205–211CrossRefGoogle Scholar
  58. 58.
    Cardellini F, Tiecco M, Germani R, Cardinali G, Corte L, Roscini L, Spreti N (2014) Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: characterization of their properties and their toxicity. RSC Adv 4:55990–56002CrossRefGoogle Scholar
  59. 59.
    Abbott AP, D’Agostino C, Davis SJ, Gladden LF, Mantle MD (2016) Do group 1 metal salts for deep eutectic solvents? Phys Chem Chem Phys 18:25528–25537PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Rengsti D, Fischer V, Kunz W (2014) Low-melting mixtures based on choline ionic liquids. Phys Chem Chem Phys 16:22815–22822CrossRefGoogle Scholar
  61. 61.
    Chen Z, Ludwig M, Warr GG, Atkin R (2017) Effect of cation alkyl chain length on surface forces and physical properties in deep eutectic solvents. J Coll Interf Sci 494:373–379CrossRefGoogle Scholar
  62. 62.
    Li M, Zhuang B, Lu Y, Wang ZG, An L (2017) Accurate determination of ion polarizabilities in aqueous solutions. J Phys Chem B 121:6416–6424PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Leyendekkers JV, Hunter RJ (1977) The Tamman-Tait-Gibson model for aqueous electrolyte solutions. Application to the refractive index. J Phys Chem 81:1657–1663CrossRefGoogle Scholar
  64. 64.
    Marcus Y (1997) Ion Properties. Marcel Dekker, New York, pp 88–92Google Scholar
  65. 65.
    Das A, Biswas R (2015) Dynamic Solvent control of a reaction in deep eutectic solvents: time-resolved fluorescence measurements of reactive and nonreactive dynamics in (choline chloride + urea) melts. J Phys Chem B 119:10102–10113PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mukherjee K, Das A, Choudhury S, Barman A, Biswas R (2015) Dielectric relaxations of (acetamide + electrolyte) deep eutectic solvents in the frequency window 0.2 ≤ v.GHz ≤ 50: anion and cation dependence. J Phys Chem B 119:8063–8071PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hardacre C (2005) Application of EXAFS to molten salts and ionic liquid technology. Ann Rev Mater Sci 35:29–49CrossRefGoogle Scholar
  68. 68.
    Sun H, Li Y, Wu X, Li G (2013) Theoretical study on the structures and properties of mixtures of urea and choline chloride. J Mol Model 19:2433–2441PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kaur S, Sharma S, Kashyap HK (2017) Bulk and interfacial structures of reline deep eutectic solvents: a molecular dynamics study. J Chem Phys. 147:194507/1-10PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ferreira ESC, Voroshylova IV, Pereira CM, Cordero MNDS (2014) Improved force field model for deep eutectic solvent ethaline: reliable physicochemical properties. J Phys Chem B 120:10124–10137CrossRefGoogle Scholar
  71. 71.
    Shen Y, He X, Hung FR (2015) Structural and dynamic properties of a deep eutectic solvent confined inside a split pore. J Phys Chem B 119:24489–24500Google Scholar
  72. 72.
    Monhemi H, Housaindokht MR, Moosavi-Movahedi AA, Bizirgmehr MR (2014) How a protein can remain stable in a solvent with high contents of urea: insights from molecular dynamics simulation of candida Antarctica lipase B in urea: choline chloride deep eutectic solvent. PhysChemChemPhys 16:14887–14895Google Scholar
  73. 73.
    Kaur S, Gupta A, Kashyap HK (2016) Nanoscale spatial heterogeneity in deep eutectic solvents. J Phys Chem B 120:6712–6720PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Fetisov EO, Harwood DB, Kuo IFW, Warrag SEE, Kroon MC, Peterrs CJ, Siepmann JI (2018) First-principle molecular dynamics study of a deep eutectic solvent: choline chloride/urea and its mixture with water. J Phys Chem B 122:1245–1254PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hammond OS, Bowron DT, Edler KJ (2016) Liquid structure of the choline chloride-urea deep eutectic solvent (Reline) from neutron diffraction and atomistic modelling. Green Chem 18:2736–2744CrossRefGoogle Scholar
  76. 76.
    Faraone A, Wagle DV, Baker GA, Novak EC, Ohl M, Reuter D, Lunkenheimer P, Loidl A, Mamontov E (2018) Glycerol hydrogen-bonding network dominates structure and collective dynamics in a deep eutectic solvent. J Phys Chem B 122:1261–1267PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cui Y, Kuroda DG (2018) Evidence of molecular heterogeneities in amide based deep eutectic solvents. J Phys Chem A 122:1185–1193PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Pandey A, Rai R, Pal M, Pandey S (2014) How polar are choline chloride-based deep eutectic solvents? Phys Chem Chem Phys 16:1559–1568PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Harifi-Mood AR, Ghobadi R, Matic S, Minofar B, Reha D (2016) Solvation analysis of some solvatochromic probes in binary mixtures of reline, ethaline, and glyceline with DMSO. J Mol Liq 222:845–853CrossRefGoogle Scholar
  80. 80.
    Pandey A, Bhawna Dhingra D, Pandey S (2017) Hydrogen bond donor/acceptor cosolvent-modified choline chloride-based deep eutectic solvents. J Phys Chem B 121:4202–4212PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Florindo C, McIntosh AJS, Welton T, Branco LC, Marrucho IM (2017) A Closer look into deep eutectic solvents exploring intermolecular interactions using solvatochromic probes. Phys Chem Chem Phys 20:206–213PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pandey A, Pandey S (2014) Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water. J Phys Chem B 118:14652–14661PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kim SH, Park S, Yu H, Kim JH, Kim HJ, Yang YH, Kim YH, Kj Kim, Kan E, Lee SH (2016) Effect of deep eutectic solvent mixtures on lipase activity and stability. J Mol Catal B: Enzymatic 128:65–72CrossRefGoogle Scholar
  84. 84.
    Ren H, Chen C, Wang C, Zhao D, Guo S (2016) The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources 11:5435–5451Google Scholar
  85. 85.
    Teles ARR, Capela EV, Carno RS, Coutinho JAP, Silvestre AJD, Freire MG (2017) Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equil 448:15–21CrossRefGoogle Scholar
  86. 86.
    Mulia K, Putri S, Krisanti E, Nassruddin (2017) Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture. Int Conf Chem Chem Proc Eng 1823:02022-1/14Google Scholar
  87. 87.
    Valvi A, Dutta J, Tiwari S (2017) Temperature-dependent empirical parameters for polarity in choline chloride based deep eutectic solvents. J Phys Chem B 121:11356–11366PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi T, Al-Wahaibi YM, Hashim MA (2012) Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim Acta 541:70–75CrossRefGoogle Scholar
  89. 89.
    Taysun MB, Sert E, Atalay FS (2017) Effect of hydrogen bond donor on the physical properties of benzyltriethylammonium chloride based deep eutectic solvents and their use in 2-ethylhexyl acetate synthesis as a catalyst. J Chem Eng Data 62:1173–1181CrossRefGoogle Scholar
  90. 90.
    Wikene KO, Rukke HV, Bruzell E, Tønnesen HJ (1016) Physicochemical characterization and antimicrobial phototoxicity of an anionic porphyrin in natural deep eutectic solvents. Eur J Pharm Biopharm 105:73–84Google Scholar
  91. 91.
    Cui Y, Li C, Yin J, Li S, Jia Y, Bao M (2017) Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride. J Mol Liq 236:338–343CrossRefGoogle Scholar
  92. 92.
    Abbott AP, Alabdullah SSM, Al-Murshedi AYM, Ryder KS (2018) Brønsted acidity in deep eutectic solvents and ionic liquids. Faraday Disc 206:365–377CrossRefGoogle Scholar
  93. 93.
    Gutierrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F (2010) Bacteria incorporated in deep eutectic solvents through freeze drying. Angew Chem Int Ed 49:2158–2162CrossRefGoogle Scholar
  94. 94.
    Van Osch DJGP, Zubeir LF, Avd Bruinhorst, Rocha MAA, Kroon MC (2015) Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem 17:4518–4521CrossRefGoogle Scholar
  95. 95.
    van Osch DJGP, Parmentier D, Dietz CHJT, van den Bruinhorst A, Tuinier R, Kroon MC (2016) Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Comm 52:11987–11990PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Cao J, Yang M, Cao F, Wang J, Su E (2017) Well-designed hydrophobic deep eutectic solvents as green and efficient media for extraction of artemisinin from artemisia annuaI leaves. ACS Sustain Chem Eng 5:3270–3278CrossRefGoogle Scholar
  97. 97.
    Cao J, Yang M, Cao F, Wang J, Su E (2017) Taylor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginko bilboa leaves. J Cleaner prod 152:399–405CrossRefGoogle Scholar
  98. 98.
    Goueiva ASL, Oliviera FS, Kurnia KA, Marrucho IM (2016) Deep eutectic solvents as azeotrope breakers: liquid-liquid extraction and COSMO-RS prediction. ACS Sustain Chem Eng 4:5640–5650CrossRefGoogle Scholar
  99. 99.
    Florindo C, Branco LC, Marrucho IM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equil 448:135–142CrossRefGoogle Scholar
  100. 100.
    Dietz CHJT, van Osch DJGP, Kroon MC, Sadowski G, van Sint Annaland M, Gallucci F, Zubeir LF, Held C (2017) PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents. Fluid Phase Equil 448:94–98CrossRefGoogle Scholar
  101. 101.
    Marcus Y (2018) Gas solubilities in deep eutectic solvents. Monatsh Chem 149:211–217CrossRefGoogle Scholar
  102. 102.
    Sarmad S, Mikkola JP, Ji X (2017) Carbon dioxide capture with ionic liquids and deep eutectic solvents: a new generation of sorbents. ChemSusChem 10:324–352PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Leron RB, Caparanga A, Li MH (2013) Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15-343.15 K and moderate pressures. J Taiwan Inst Chem Eng 44:879–885CrossRefGoogle Scholar
  104. 104.
    Lu M, Han G, Jiang Y, Zhang X, Deng D, Ai N (2015) Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride. J Chem Thermodyn 68:71–77Google Scholar
  105. 105.
    Altamash T, Nasser MS, Elhamarnah Y, Magzoub M, Ulla R, Anaya B, Aparicio S, Atilhan M (2017) Gas solubility and rheological behavior of natural deep eutectic solvents (NADES) via combined experimental and molecular simulation techniques. Chem Sel 2:7278–7295Google Scholar
  106. 106.
    Mirza NR, Nicholas NJ, Wu Y, Mumford KA, Kentish SE, Stevens GW (2015) Experiments and thermodynamic modeling of the solubility of carbon dioxide in three different deep eutectic solvents (DESs). J Chem Eng Data 60:3246–3254CrossRefGoogle Scholar
  107. 107.
    Zhang K, Ren S, Hou Y, Wu W (2017) Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents. J Hazard Mater 324:457–463PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zhang K, Ren S, Yang X, Hou Y, Wu W, Bao Y (2017) Efficient absorption of low concentration SO2 in simulated flue gas by functional deep eutectic solvents based on imidazole and its derivatives. Chem Eng J 327:128–134CrossRefGoogle Scholar
  109. 109.
    Yang D, Han Y, Qi H, Wang Y, Dai S (2017) Efficient absorption of SO2 by EmimCl-EG deep eutectic solvent. ACS Sustain Chem Eng 5:6382–6386CrossRefGoogle Scholar
  110. 110.
    Deng D, Han G, Jang Y (2015) Investigation of a deep eutectic solvent formed by levulinic acid with quaternary ammonium salt as an efficient SO2 absorbent. New J Chem 39:8158–8164CrossRefGoogle Scholar
  111. 111.
    Kamgar A, Mohsenpour S, Esmaeilzadeh F (2017) Solubility of CO2, CH4, H2, CO, and N2 in choline chloride/urea as a eutectic solvent using NRTL and COSMO-RS models. J Mol Liq 247:70–74CrossRefGoogle Scholar
  112. 112.
    Haghbakhsh R, Raeissi S (2018) Modeling vapor-liquid equilibria of mixtures of SO2 and deep eutectic solvents using CPA-NRTL and CPA-UNIQUAC models. J Mol Liq 250:259–268CrossRefGoogle Scholar
  113. 113.
    Deng D, Jiang Y, Liu X, Zhang Z, Ai N (2016) Investigation of solubilities of carbon dioxide in five levulinic acid-based deep eutectic solvents and their thermodynamic properties. J Chem Thermodyn 103:212–217CrossRefGoogle Scholar
  114. 114.
    Zubeir LF, Held C, Sadowski G, Kroon MC (2016) PC-SAFT modelling of CO2 solubilities in deep eutectic solvents. J Phys Chem B 120:2300–2310PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Li Q, Jiang J, Li G, Zhao W, Zhao X, Mu T (2016) The electrochemical stability of ionic liquids and deep eutectic solvents. Sci China Chem 59:571–577CrossRefGoogle Scholar
  116. 116.
    Popescu A-M, Constantin V, Cojocaru A, Olteanu M (2011) Electrochemical behavior of copper(II)) chloride in choline chloride-urea deep eutectic solvent. Revista Chim (Bucharest) 62:206–210Google Scholar
  117. 117.
    Steichen M, Thomassey M, Siebentritt S, Dale PJ (2011) Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 this film solar cells. Phys Chem Chem Phys 13:4292–4302PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Haerens K, Matthijs E, Binnemans K, van der Bruggen B (2009) Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem 11:1357–1365CrossRefGoogle Scholar
  120. 120.
    Figueiredo M, Gomes C, Costa R, Martins A, Pereira CM, Silva F (2009) Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes. Electrochim Acta 54:2630–2634CrossRefGoogle Scholar
  121. 121.
    Costa R, Figueiredo M, Pereira CM, Silva F (2010) Electrochemical double layer at the interfaces of Hg/choline chloride based solvents. Electrochim Acta 55:8916–8920CrossRefGoogle Scholar
  122. 122.
    Boisset A, Jacquemin J, Anouti M (2013) Physical properties of a new deep eutectic solvent based on lithium bis[trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim Acta 102:120–126CrossRefGoogle Scholar
  123. 123.
    Baokou X, Anouti M (2014) Physical properties of a new deep eutectic solvent based on sulfonium ionic liquid as a suitable electrolyte for electric double-layer capacitors. J Phys Chem C 119:970–979CrossRefGoogle Scholar
  124. 124.
    Ju Y-J, Lien C-H, Chang K-H, Hu C-C, Wong DS-H (2012) Deep eutectic solvent-based ionic liquid electrolytes for electrical double layer capacitors. J Chin Chem Soc 59:1280–1287CrossRefGoogle Scholar
  125. 125.
    Atilhan M, Aparicio S (2017) Behavior of deep eutectic solvents under external electric fields: a molecular dynamics approach. J Phys Chem B 121:221–232PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani MES, Saheed OK (2013) Are deep eutectic solvents benign or toxic? Chemosphere 90:2193–2195PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani MES (2013) Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 93:455–459PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Hayyan M, Looi CY, Hayyan A, Wong WF, Hashim MA (2015) In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. Plos One 10:117934/1-18PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Hayyan M, Mbous YP, Looi CY, Wong WF, Hayyan A, Salleh Z, Mohd-Ali O (2016) Natural deep eutectic solvents: cytotoxic profile. SpringerPlus 5:913PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA (2017) Unraveling the cytotoxicity and metabolic pathways of binary natural eutectic solvent systems. Sci Reports 7:41257/1-14Google Scholar
  131. 131.
    Cardellini F, Germani R, Cardinali G, Corte L, Roscini L, Spreti N, Tiecco M (2015) Room temperature deep eutectic solvents of camphorsulfonic acid and sulfobetaines: hydrogen bond-based mixtures with low iconicity and structure-dependent toxicity. RSC Adv 5:31772–31786CrossRefGoogle Scholar
  132. 132.
    Juneidi I, Hayyan M, Hashim MA (2015) Evaluation of toxicity and biodegradability for choline chloride-based deep eutectic solvents. RSC Adv 5:83636–83647CrossRefGoogle Scholar
  133. 133.
    Chen J, Wang Q, Liu M, Zhang L (2017) The effect of deep eutectic solvent on the pharmacokinetics of salvianolic acid B in rats and its acute toxicity test. J Chromatogr B 1063:60–66CrossRefGoogle Scholar
  134. 134.
    Juneidi I, Hayyan M, Ali OM (2016) Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ Sci Pollut Res 23:7648–7659CrossRefGoogle Scholar
  135. 135.
    Radošević K, Bubalo MC, Srček VG, Grgas D, Dragičević TL, Redovnoković IR (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 112:46–53PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Radoševic K, Železnjak J, Bubalo MC, Redovnoković IR, Slivak I, Srček VG (2016) Comparative in vitro study of cholinium-based ionic liquids and deep eutectic solvents towards fish cell line. Ecotoxicol Environ Saf 131:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    de Morais P, Gonçalves F (2015) Ecotoxicity of cholinium-based deep eutectic solvents. ACS Sustain Chem Eng 3:3398–3404CrossRefGoogle Scholar
  138. 138.
    Wen Q, Chen JX, Rang YL, Wang J, Yang Z (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–69PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Tang S, Baker GA, Zhao H (2012) Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev 41:4030–4066PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Zakrewsky M, Banerjee A, Apte S, Kern TL, Jones MR, Del Sesto RE, Koppisch AT, Fox DT, Mitragotri S (2016) Choline and geranate deep eutectic solvent as a broad-spectrum antiseptic agent and preventive and therapeutic applications. Adv Healthcare Mater 5:1282–1289CrossRefGoogle Scholar
  141. 141.
    Wikene KO, Rukke HV, Bruzell E, Tonnesen HH (2017) Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy. J Photochem Photobiol B: Biol 171:27–32CrossRefGoogle Scholar
  142. 142.
    Sadaf A, Kumari A, Kare SH (2018) Potential of ionic liquids for inhibiting the growth and β-lactamase production by Bacillus cereus EMB20. Int J Bio Macromol 107:1915–1921CrossRefGoogle Scholar
  143. 143.
    Kudlak B, Owczarek K, Namlesnik J (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ Sci Pollut Res 22:11975–11992CrossRefGoogle Scholar
  144. 144.
    Ghaedi H, Ayoub M, Sufian S, Shariff AN, Lal B (2017) The study on the temperature dependence of viscosity and surface tension of several phosphonium-based deep eutectic solvents. J Mol Liq 241:500–510CrossRefGoogle Scholar
  145. 145.
    Mjalli FS, Ahmad O (2017) Density of aqueous choline chloride-based ionic liquid analogies. Thermochim Acta 647:8–14CrossRefGoogle Scholar
  146. 146.
    Zhang K, Li H, Ren S, Wu W, Bao Y (2017) Specific heat capacities of two functional ionic liquids and two functional deep eutectic solvents for the absorption of SO2. J Chem Eng Data 62:2708–2712CrossRefGoogle Scholar
  147. 147.
    D’Agostino C, Harris RC, Abbott AP, Gladden LF, Mantle MD (2011) Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. Phys Chem Chem Phys 13:21383–21391PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA (2016) Glycerol-based deep eutectic solvents: physical properties. J Mol Liq 215:98–103CrossRefGoogle Scholar
  149. 149.
    Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi T, Al-Wahaibi YM, Hashim MA (2013) Glucose-based deep eutectic solvents: physical properties. J Mol Liq 178:137–141CrossRefGoogle Scholar
  150. 150.
    Mjalli FS, Murshid G, Al-Zakwami S, Hayyan A (2017) Monoethanolamine-based deep eutectic solvents, their synthesis and characterization. Fluid Phase Equil 448:30–40CrossRefGoogle Scholar
  151. 151.
    Chen Z, Ludwig M, Warr GG, Atkin R (1017) Effect of cation alkyl chain length on surface forces and physical properties in deep eutectic solvents. J Coll Interf Sci 494:373–379CrossRefGoogle Scholar
  152. 152.
    Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2012) Prediction of surface tension of deep eutectic solvents. Fluid Phase Equil 319:48–54CrossRefGoogle Scholar
  153. 153.
    Jibril B, Mjalli F, Naser J, Gano Z (2014) New tetrapropylammonium bromide-based deep eutectic solvents: synthesis and characterizations. J Mol Liq 199:462–469CrossRefGoogle Scholar
  154. 154.
    Mjalli FS (2016) Novel amino acid based ionic liquids analogues: acidic and basic amino acids. J Taiwan Inst Chen Eng 61:64–74CrossRefGoogle Scholar
  155. 155.
    Mjalli FS, AlHajri R, Al-Muhtaseb A, Ahmed O, Nagaraju M (2016) Novel amino acid-based ionic liquid analogues: neutral hydroxylic and sulfur-containing amino acids. Asia-Pacific J Chem Eng 11:683–694CrossRefGoogle Scholar
  156. 156.
    Hu Y, Li H, Hueng X, Chem L (2004) Novel room temperature molten salt electrolytes based on LITFSI and acetamide for lithium batteries. Electrochem Comm 6:28–32CrossRefGoogle Scholar
  157. 157.
    Mjalli FS, Shahbaz K, Hashim MA, AlNashef IM (2013) Surface tension of ionic liquids analogues using the QSPR correlation. Int J Chem Eng Appl 4:96–100Google Scholar
  158. 158.
    Leron RB, Li MH (2012) High pressure density measurements for choline chloride: urea deep eutectic solvent and its aqueous mixtures at T – (298.15 to 323.15) K and up to 50 MPa. J Chem Thermodyn 54:293–301CrossRefGoogle Scholar
  159. 159.
    Yadav A, Pandey S (2014) Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J Chem Eng Data 59:2221–2229CrossRefGoogle Scholar
  160. 160.
    Shekaari H, Zafarani-Moattar MT, Mohammadi B (2017) Thermophysical characterization of aqueous deep eutectic solvent (choline chloride/urea) solutions in full range of concentration at T = (293.15 – 323.15) K. J Mol Liq 243:451–461CrossRefGoogle Scholar
  161. 161.
    Yadav A, Kar Yadav A, Verma M, Naqvi S, Pandey S (2015) Densities of aqueous mixtures of (choline chloride + ethylene glycol) and (choline chloride + malonic acid) deep eutectic solvents in temperature range 283.156-363.15 K. Thermochim Acta 600:95–101CrossRefGoogle Scholar
  162. 162.
    Yadav A, Trivedi S, Rai R, Pandet S (2014) Densities and dynamic viscosities of (choline chloride + glycerol) deep eutectic solvent and its aqueous mixtures in temperature range (283.156-363.15) K. Fluid Phase Equil 367:135–142CrossRefGoogle Scholar
  163. 163.
    Shahbaz K, Bagh FSG, Mjalli FS, AlNashef IM, Hashim MA (2013) Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equil 354:304–311CrossRefGoogle Scholar
  164. 164.
    Lu M, Han G, Zhang X, Deng D, Ai N (2015) Solubilities of carbon dioxide in the eutectic mixtures of levulinic acid (or furfuryl alcohol) and choline chloride. J Chem Thermodyn 88:72–77CrossRefGoogle Scholar
  165. 165.
    Florindo C, Oliveira MM, Branco LC, Marrucho IM (2017) Carbohydrates-based deep eutectic solvents: thermophysical properties and rice straw dissolution. J Mol Liq 247:441–447CrossRefGoogle Scholar
  166. 166.
    Ghaedi H, Ayoub M, Sufian S, Hailegiorgis SM, Murshi G, Khan SW (2018) Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. J Chem Thermodyn 116:50–60CrossRefGoogle Scholar
  167. 167.
    Sas OG, Fidalgo R, Dominguez I, Macedo EA (2016) Physical properties of the pure deep eutectic solvent [ChCl]:[Lev] (1:2) and its binary mixtures with alcohols. J Chem Eng Data 61:4191–4202CrossRefGoogle Scholar
  168. 168.
    Wang Y, Hiu Y, Wu W, Liu D, Ji Y, Ren S (2016) Roles of hydrogen bond donor and hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem 18:3089–3097CrossRefGoogle Scholar
  169. 169.
    Zhu J, Yu K, Zhu Y, Ye F, Song N, Xu Y (2017) Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T = (293.15 to 333.15) K: the influence of electronic effect of substitution group. J Mol Liq 232:182–187CrossRefGoogle Scholar
  170. 170.
    Liu X, Gao B, Jiang Y, Ai N, Deng D (2017) Solubilities and thermodynamic properties of carbon dioxide in guaiacol-based deep eutectic solvents. J Chem Eng Data 62:1448–1455CrossRefGoogle Scholar
  171. 171.
    Deng D, Liu X, Gao B (2017) Physicochemical properties and investigation of azole-based deep eutectic solvents as efficient and reversible SO2 absorbents. Ind Eng Chem Res 56:13850–13856CrossRefGoogle Scholar
  172. 172.
    Siongko KR, Leron RB, Li MH (2013) Densities, refractive indices, and viscosities on N, N-diethylethanolammonium chloride-glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions. J Chem Thermodyn 65:65–72CrossRefGoogle Scholar
  173. 173.
    Hayyan M, Aissaoui T, Hashim MA, Alsaadi MA, Hayyan A (2017) Triethylene glycol based deep eutectic solvents and their physical properties. J Taiwan Inst Chem Eng 50:24–30CrossRefGoogle Scholar
  174. 174.
    Su HZ, Jm Yin, Qs Liu, Ping LC (2015) Properties of four deep eutectic solvents: density, electrical conductivity, dynamic viscosity and refractive index. Acta Phys Chim Sin 31:1468–1473Google Scholar
  175. 175.
    Aissaoui T, Benguerba Y, AlOmar MK, AlNashef IM (2017) Computational investigation of the microstructural characteristics and physical properties of glycerol-based deep eutectic solvents. J Mol Model 23:277–289PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Rodriguez NR, Requejo PF, Kroon MC (2015) Aliphatic-aromatic separation using deep eutectic solvents as extracting agents. Ind Eng Chem Res 54:11404–11412CrossRefGoogle Scholar
  177. 177.
    Taysun MB, Sert E, Atalay FS (2016) Physical properties of benzyl triphenyl ammonium chloride based deep eutectic solvents and employment as catalyst. J Mol Liq 223:845–852CrossRefGoogle Scholar
  178. 178.
    Basaiahgari A, Panda S, Gardas RL (2017) Acoustic, volumetric, transport, optical, and rheological properties of benzyltripropylammonium chloride based deep eutectic solvents. Fluid Phase Equil 448:41–49CrossRefGoogle Scholar
  179. 179.
    Kareem MA, Mjalli FS, Hashim MA, AlNashef IM (2010) Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data 55:4632–4637CrossRefGoogle Scholar
  180. 180.
    Sun S, Niu Y, Xu Q, Sun Z, Wei X (2015) Efficient SO2 absorptions by four kinds of deep eutectic solvents based on choline chloride. Ind Eng Chem Res 54:8019–8124CrossRefGoogle Scholar
  181. 181.
    Ali E, Hadj-Kali MK, Mulyono S, Alnashef I, Fakeeha A, Mjalli F, Hayyan A (2014) Solubility of CO2 in deep eutectic solvents: experiments and modelling using the Peng-Robinson equation of state. Chem Eng Res Des 92:1898–1906CrossRefGoogle Scholar
  182. 182.
    Ghaedi H, Ayoub M, Sufian S, Lal B, Shariff AM (2017) Measurement and correlation of physicochemical properties of phosphonium-based deep eutectic solvents at several temperatures (293.15 K – 343.15 K) for CO2 capture. J Chem Thermodyn 113:41–51CrossRefGoogle Scholar
  183. 183.
    Ghaedi H, Ayoub M, Sufian S, Hailegiorgis SM, Murshi G, Farrukh S, Khan SW (2017) Experimental and prediction of volumetric properties of aqueous solutions of (allyltriphenyl-phosphonium bromide-triethylene glycol) deep eutectic solvents. Thermochim Acta 657:123–133CrossRefGoogle Scholar
  184. 184.
    Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Eutectic based ionic liquids with metal-containing anions and cations. Chem Eur J 13:6495–6501PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Shahbaz K, AlNashef IM, Lin RJT, Hashim MA, Mjalli ES, Farid MM (2016) A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change material. Solar Energy Mater Solar Cell 155:147–155CrossRefGoogle Scholar
  186. 186.
    Abbott AP, Al-Barzinjy AA, Abbott PD, Frisch G, Harris RC, Hartley J, Ryder KS (2014) Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3∙6H2O and urea. Phys Chem Chem Phys 16:9047–9055PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Naser J, Mjalli FS, Jibril B, Al-Hatmi S, Gano Z (2013) Potassium carbonate as a salt for deep eutectic solvents. Intl J Chem Eng Appl 4:114–118Google Scholar
  188. 188.
    Ghaedi H, Ayoub M, Sufian S, Shariff AM, Lal B, Wilfred CD (2017) Density and refractive index measurements of transition temperature mixture (deep eutectic analogies) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. J Chem Thermodyn 118:147–158CrossRefGoogle Scholar
  189. 189.
    Liu B, Wei F, Zhao J, Wang Y (2013) Characterization of amide-thiocyanate eutectic ionic liquids and their application in SO2 absorption. RSC Adv 3:2470–2476CrossRefGoogle Scholar
  190. 190.
    Leron RB, Li MH (2012) High pressure volumetric properties of choline chloride-ethylene glycol based deep eutectic solvent and its mixture with water. Thermochim Acta 546:54–60CrossRefGoogle Scholar
  191. 191.
    Leron RB, Wong DSH, Li MH (2012) Densities of a deep eutectic solvent based on choline chloride and glycerol and its mixture with water at elevated pressures. Fluid Phase Equil 335:32–38CrossRefGoogle Scholar
  192. 192.
    Wahab A, Mahuuddin S, Hefter G, Kunz W, Minofar B, Jungwirth P (2005) Ultrasonic velocities, densities, viscosities, electrical conductivities, Raman spectra, and molecular dynamics simulations of aqueous solutions of Mg(OAc)2, and Mg(NO3)2: Hofmeister effects and ion pair formation. J Phys Chem B 109:24108–24120PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Millero FJ, Ward GK, Chetirkin PV (1977) Relative sound velocities of sea salts at 25 °C. J Acoust Soc Am 61:1492–1498CrossRefGoogle Scholar
  194. 194.
    Allam DS, Lere WH (1966) Ultrasonic studies of electrolyte solutions. Part II. Compressibilities of electrolytes. J Chem Soc A 1966:5–9CrossRefGoogle Scholar
  195. 195.
    Rohman N, Mahiuddin S, Dass NN (1999) Speed of sound in aqueous and methanolic lithium nitrate solutions. J Chem Eng Data 44:473–479CrossRefGoogle Scholar
  196. 196.
    Rohman N, Mahiuddin S, Dass NN, Yoo KP (2002) Isentropic compressibility of aqueous and methanolic electrolyte solutions. Korean J Chem Eng 19:679–684CrossRefGoogle Scholar
  197. 197.
    Rohman N, Wahab A, Mahiuddin S (2003) Isentropic compressibility, shear relaxation time. And Raman spectra of aqueous calcium nitrate and cadmium nitrated solutions. J Solution Chem 34:77–94CrossRefGoogle Scholar
  198. 198.
    Xie Y, Dong H, Zhang S, Lu X, Jiu X (2014) Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea. J Chem Eng Data 59:3344–3352CrossRefGoogle Scholar
  199. 199.
    Harifi-Mood AR, Buchner R (2017) Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide. J Mol Liq 225:689–695CrossRefGoogle Scholar
  200. 200.
    Aroso IM, Paiva A, Reis RL, Duarte ARC (2017) Natural deep eutectic solvents from choline chloride and betaine—physicochemical properties. J Mol Liq 214:654–661CrossRefGoogle Scholar
  201. 201.
    Maugeri Z, Dominguez de Maria P (2012) Novel choline chloride-based deep eutectic solvents with renewable hydrogen bond donors/levulinic acid and sugar-based polyols. RSC Adv 2:421–425CrossRefGoogle Scholar
  202. 202.
    Li G, Jiang Y, Liu X, Deng D (2016) New levulinic acid-based deep eutectic solvents: synthesis and physicochemical property determination. J Mol Liq 222:201–207CrossRefGoogle Scholar
  203. 203.
    Dietz CHJT, Kroon MC, MvS Annaland, Gallucci F (2017) Thermophysical properties and solubility of different sugar-derived molecules in deep eutectic solvents. J Chem Eng Data 62:3633–3641CrossRefGoogle Scholar
  204. 204.
    Baokou X, Anouti M (2015) Physical properties of a new deep eutectic solvent based on a sulfonium ionic liquid as a suitable electrolyte for electric double-layer capacitors. J Phys Chem C 119:970–979CrossRefGoogle Scholar
  205. 205.
    Mahuiddin S, Ismail K (1983) Concentration dependence of the viscosity of aqueous electrolytes. A probe into higher concentrations. J Phys Chem 87:5241–5244CrossRefGoogle Scholar
  206. 206.
    Washburn EW (1929) International critical tables of numerical data, physics, chemistry, technology, vol V. McGraw Hill, New York, p 14Google Scholar
  207. 207.
    Goldsack DE, Franchetto R (1977) The viscosity of concentrated electrolyte solutions. I. Concentration dependence at fixed temperature. Can J Chem 55:1062–1072CrossRefGoogle Scholar
  208. 208.
    Sipos PM, Hefter G, May PM (2000) Viscosities and densities of highly concentrated aqueous MOH solutions at 25 °C. J Chem Eng Data 45:613–617CrossRefGoogle Scholar
  209. 209.
    Wimby JM, Berntsson TS (1994) Viscosity and density of aqueous solutions of LiBr, LiCl, ZnBr 2, CaCl2, and LinO3. 1. Single salt solutions. J Chem Eng Data 39:68–72CrossRefGoogle Scholar
  210. 210.
    Anders UT (1976) Magnetic liquids. Mater Sci Eng 26:269–275CrossRefGoogle Scholar
  211. 211.
    Abdulagatov IM, Azizov ND (2005) Viscosities of aqueous LiI solutions at 293-525 K and 0.1-40 MPa. Thermochim Acta 439:8–20CrossRefGoogle Scholar
  212. 212.
    Simeral L, Maciel GE (1976) Fourier transform magnesium-25 nuclear magnetic resonance study of aqueous magnesium (II) electrolytes. J Phys Chem 80:552–557CrossRefGoogle Scholar
  213. 213.
    Isono T (1984) Density, viscosity, and electrical conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline earth chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J Chem Eng Data 29:45–52CrossRefGoogle Scholar
  214. 214.
    Phang S, Stokes RH (1980) Density, viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25 °C. J Solution Chem 9:497–505Google Scholar
  215. 215.
    Phang S (1980) The density, viscosity, and transference number of aqueous manganese chloride at 298.15 K. Austr J Chem 33:413–417CrossRefGoogle Scholar
  216. 216.
    Puchkov LV, Sargaev PM (1971) Viscosities of lithium, sodium, potassium, and ammonium nitrate solutions at temperatures up to 275 °C. Zhur Priklad Khim 46:2637–2640Google Scholar
  217. 217.
    Abbott AP, Capper G, Davies DL, Rasheed R (2004) Ionic liquids based on metal halide/substituted quaternary ammonium salt mixtures. Inorg Chem 43:3447–3454PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Abood HMA, Abbott AP, Ballantyne AD, Ryder KS (2011) Do all ionic liquids need organic cations? Characterization of [AlCl2namide]+AlCl4 and comparison with imidazolium based systems. Chem Comm 47:3523–3525PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Abbott AP, Capper G, Davies DJ, Rasheed RK (2004) Ionic liquid analogues formed from hydrated salts. Chem Eur J 10:3769–3774PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Zawadzki M, Krolikowski M, Antonowicz J, Lipinski P, Karpinska M (2016) Physicochemical and thermodynamic properties of the (1-alkyl-1-methylmorpholinium bromide [C1Cn=3,4,5MOR]Br, or 1-methyl-1-pentylpiperidinium bromide [C1C5PIP]Br + water) binary systems. J Chem Thermodyn 98:324–337CrossRefGoogle Scholar
  221. 221.
    Duarte ARC, Ferreira ASD, Barreiros S, Cabrita E, Reis RL, Paiva A (2017) A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: solubility and permeability studies. Eur J Pharm Biopharm 114:296–304PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Abbott AP, Capper G, Gray S (2006) Design of improved deep eutectic solvents using hole theory. Chem Phys Chem 7:803–806PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Abbott AP, Harris RC, Ryder KS (2007) Application of hole theory to define liquids by their transport properties. J Phys Chem B 111:4910–4913PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Bagh ESG, Shahbaz K, Mjalli FS, AlNashef IM, Hashim MA (2013) Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: measurements and artificial intelligence-based prediction. Fluid Phase Equil 356:30–37CrossRefGoogle Scholar
  225. 225.
    Hayyam M, Aisaoui T, Hashim MA, AlSaadi MA, Hayyan A (2015) Triethylene glycol based deep eutectic solvents and their physical properties. J Taiwan Inst Chem Eng 50:24–30CrossRefGoogle Scholar
  226. 226.
    Bahadori L, Chakrabarti MH, Abdul Manan NS, Hashim MA, Mjalli FS, AlNashef IM, Brandon N (2015) The effect of temperature on kinetics and diffusion coefficients of metallocene derivatives in polyol-based deep eutectic solvents. PLoS One 10(12):1–21CrossRefGoogle Scholar
  227. 227.
    Craveiro R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionisio M, Barreiros S, Reis RI, Dusrte ARC, Paiva A (2016) Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 215:534–540CrossRefGoogle Scholar
  228. 228.
    Grishina ER, Kudryakova NO (2017) Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions. Russ J Phys Chem A 91:2024–2028CrossRefGoogle Scholar
  229. 229.
    Liang H, Li H, Wang Z, Wu F, Chem L, Huang X (2001) New binary room-temperature molten salt electrolytes based on urea and LITFSI. J Phys Chem B 105:9966–9969CrossRefGoogle Scholar
  230. 230.
    Postler M (1970) Conductance of concentrated aqueous solutions of electrolytes. II. Strong polyvalent electrolytes. Coll Czech Chem Comm 35:2244–2249CrossRefGoogle Scholar
  231. 231.
    Maksimova IN, Sergeev SV (1974) Equations for calculating density, viscosity, and electrical conductivity of potassium hydroxide at temperatures from −60 to 60°. Russ J Appl Chem 47:1712–1714Google Scholar
  232. 232.
    Islam SS, Gupta RL, Ismail K (1991) Extension of the Falkenhagen-Leist-Kelbg equation to the electrical conductance of concentrated aqueous electrolytes. J Chem Eng Data 36:102–104CrossRefGoogle Scholar
  233. 233.
    Postler M (1970) Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes. Coll Czech Chem Comm 35:535–544CrossRefGoogle Scholar
  234. 234.
    Campbell AN, Paterson WG (1958) The conductances of aqueous solutions of lithium chlorate at 25.00 °C and 131.8 °C. Can J Chem 36:1004–1012CrossRefGoogle Scholar
  235. 235.
    Campbell AN, Debus GH, Kartzmark EM (1955) Conductances of aqueous lithium nitrate solutions at 25.0 °C and 110.0 °C. Can J Chem 33:1508–1514CrossRefGoogle Scholar
  236. 236.
    Mahiuddin S, Ismail K (1984) Study of the concentration dependence of the conductance of aqueous electrolytes. J Phys Chem 88:1027–1031CrossRefGoogle Scholar
  237. 237.
    Stokes RH, Phang S, Mills R (1979) Density, conductance, transference numbers, and diffusion measurements in concentrated solutions of nickel chloride at 25 °C. J Solution Chem 8:489–500CrossRefGoogle Scholar
  238. 238.
    Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13:82–90CrossRefGoogle Scholar
  239. 239.
    Shah D, Mjalli FS (2014) Effect of water on the thermo-physical properties of Reline: an experimental and molecular simulation based approach. Phys Chem Chem Phys 16:23900–23907PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Jablonsky M, Skulcova A, Kamenska L, Vrska M, Sima J (2015) Deep eutectic solvents: fractionation of wheat straw. BioResources 10:8039–8047Google Scholar
  241. 241.
    Leron RB, Soriano AN, Li MH (2012) Densities and refractive indices of deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperatures ranging from 298.15 to 333.15 K. J Taiwan Int Chem Eng 43:551–557CrossRefGoogle Scholar
  242. 242.
    Ma C, Guo Y, Li D, Zong J, Ji X, Liu C (2017) Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water. J Chem Thermodyn 105:30–36CrossRefGoogle Scholar
  243. 243.
    Chemat F, You HJ, Muthukumar K, Murugesan T (2015) Effect of L-arginine on the physical properties of choline chloride and glycerol based deep eutectic solvents. J Mol Liq 212:605–611CrossRefGoogle Scholar
  244. 244.
    Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MKO, Bagh FSG, Alnashef IM (2012) Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha. Fluid Phase Equil 333:47–54CrossRefGoogle Scholar
  245. 245.
    Mjalli FS, Ahmed OU (2016) Characteristics and intermolecular interaction of eutectic binary mixtures: Reline and Glyceline. Korean J Chem Eng 33:337–343CrossRefGoogle Scholar
  246. 246.
    Aissaoui T (2016) Acidity, salinity, and total dissolved solids for triethylene glycol based deep eutectic solvents. Int J Appl Biol Pharm Technol 7:282–286Google Scholar
  247. 247.
    Mjalli FS, Abdel Jabbar NM (2014) Acoustic investigation of choline chloride based ionic liquids analogs. Fluid Phase Equil 381:71–76CrossRefGoogle Scholar
  248. 248.
    Haghbakhsh R, Raeissi S, Parvaneh A, Shariati K (2018) A friction theory for modeling the viscosities of deep eutectic solvents using the CPA and PC-SAFT equations of state. J Mol Liq 249:554–561CrossRefGoogle Scholar
  249. 249.
    Mjalli FS, Naser J, Jibril B, Al-Hatmi SS, Gano ZS (2014) Ionic liquids analogs based on potassium carbonate. Thermochim Acta 575:135–143CrossRefGoogle Scholar
  250. 250.
    Singh A, Walvekar R, Khalid M, Wong WY, Gupta TCSM (2018) Thermophysical properties of glycerol and polyethylene glycol (PEG 600) based DES. J Mol Liq 252:439–444CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations