Advertisement

An Improved Quadratic Programming LLOP Algorithm for Wireless Localization

  • Guangzhe Liu
  • Jingyu Hua
  • Feng Li
  • Weidang Lu
  • Zhijiang Xu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 251)

Abstract

With the rapid increasing of smart devices, wireless positioning technology has become a hot research area. Accordingly, this paper puts forward an optimization-based localization in the wireless network, in which both the quadratic programming (QP) and the principle of linear line of position (LLOP) are taken into account. Moreover, a two-step improvement is proposed to enhance the constrained optimization model, and the simulations demonstrate its effectiveness. Among the tested localization methods, the proposed algorithm performs the best in the non-line-of-sight (NLOS) propagating environment, and its estimating stability over original LLOP algorithm is also obviously observed.

Keywords

Wireless localization Linear line of position (LLOP) Quadratic programming Non-line-of-sight error 

Notes

Acknowledgement

This paper was sponsored by the National Natural Science Foundation of China under grant No. 61471322.

References

  1. 1.
    Reed, J., Rappaport, T.: An overview of the challenges and progress in meeting the E-911 requirement for location service. IEEE Commun. Mag. 36(4), 30–37 (1998)CrossRefGoogle Scholar
  2. 2.
    Konings, D., Faulkner, N., Alam, F., et al.: Do RSSI values reliably map to RSS in a localization system. In: Proceedings of the IEEE Recent Trends in Telecommunications Research, pp. 1–5 (2017)Google Scholar
  3. 3.
    Yang, C.Y., Chen, B.S., Liao, F.K.: Mobile location estimation using fuzzy-based IMM and data fusion. IEEE Trans. Mobile Comput. 9(10), 1424–1436 (2010)CrossRefGoogle Scholar
  4. 4.
    Liu, D., Wang, Y., He, P., et al.: TOA localization for multipath and NLOS environment with virtual stations. EURASIP J. Wirel. Commun. Netw. (2017).  https://doi.org/10.1186/s13638-017-0896-1
  5. 5.
    Bnilam, N., Ergeerts, G., Subotic, D., et al.: Adaptive probabilistic model using angle of arrival estimation for IoT indoor localization. In: Proceedings of the IEEE International Conference on Indoor Positioning and Indoor Navigation, pp. 1–7 (2017)Google Scholar
  6. 6.
    Tomic, S., Beko, M., Rui, D., et al.: A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wirel. Commun. Lett. 5(6), 680–683 (2016)CrossRefGoogle Scholar
  7. 7.
    Huang, B., Xie, L., Yang, Z.: TDOA-based source localization with distance-dependent noises. IEEE Trans. Wirel. Commun. 14(1), 468–480 (2015)CrossRefGoogle Scholar
  8. 8.
    Gholami, M.R., Gezici, S., Strom, E.G.: TDOA based positioning in the presence of unknown clock skew. IEEE Trans. Commun. 61(6), 2522–2534 (2013)CrossRefGoogle Scholar
  9. 9.
    Khalajmehrabadi, A., Gatsis, N., Pack, D., et al.: A joint indoor WLAN localization and outlier detection scheme using LASSO and elastic-net optimization techniques. IEEE Trans. Mobile Comput. 16(8), 2079–2092 (2017)CrossRefGoogle Scholar
  10. 10.
    Narzullaev, A., Park, Y., Yoo, K., et al.: A fast and accurate calibration algorithm for real-time locating systems based on the received signal strength indication. AEU-Int. J. Electron. Commun. 65(4), 305–311 (2011)CrossRefGoogle Scholar
  11. 11.
    Demeechai, T., Kukieattikool, P., Ngo, T., et al.: Localization based on standard wireless LAN infrastructure using MIMO-OFDM channel state information. EURASIP J. Wirel. Commun. Netw. 146, 1–16 (2016)Google Scholar
  12. 12.
    Pecoraro, G., Domenico, S.D., Cianca, E., et al.: LTE signal fingerprinting localization based on CSI. In: Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 1–8 (2017)Google Scholar
  13. 13.
    Lo, Y.C., Chiu, C.C., Huang, C.H.: Mitigating NLOS error for UWB positioning system. In: Proceedings of the IET International Conference on Wireless, Mobile and Multimedia Networks, pp. 1–3 (2006)Google Scholar
  14. 14.
    Silventoinen, M.I., Rantalainen, T.: Mobile station emergency locating in GSM. In: Proceedings of the IEEE International Conference on Personal Wireless Communications, pp. 232–238 (1996)Google Scholar
  15. 15.
    Wylie, M.P., Holtzman, J.: The non-line of sight problem in mobile location estimation. In: Proceedings of the IEEE International Conference on Universal Personal Communications, pp. 827–831 (1996)Google Scholar
  16. 16.
    Muqaibel, A.H., Landolsi, M.A., Mahmood, M.N.: Practical evaluation of NLOS/LOS parametric classification in UWB channels. In: Proceedings of the International Conference on Communications, Signal Processing, and Their Applications, pp. 1–6 (2013)Google Scholar
  17. 17.
    Almazrouei, E., Sindi, N.A., Al-Araji, S.R., et al.: Measurement and analysis of NLOS identification metrics for WLAN systems. In: Proceedings of the IEEE International Symposium on Personal, Indoor, and Mobile Radio Communication, pp. 280–284 (2015)Google Scholar
  18. 18.
    Chan, Y.W.E., Soong, B.H.: Discrete weighted centroid localization (dWCL): performance analysis and optimization. IEEE Access 4, 6283–6294 (2016)CrossRefGoogle Scholar
  19. 19.
    Yang, K., An, J., Bu, X., et al.: A TOA-based location algorithm for NLOS environments using quadratic programming. In: Proceedings of the IEEE Wireless Communications and Networking Conference, pp. 1–5 (2010)Google Scholar
  20. 20.
    Al-Qahtani, K.M., Al-Ahmari, A.S., Muqaibel, A.H., et al.: Improved residual weighting for NLOS mitigation in TDOA-based UWB positioning systems. In: Proceedings of the International Conference on Telecommunications, pp. 211–215 (2014)Google Scholar
  21. 21.
    Zheng, X., Hua, J., Zheng, Z., et al.: LLOP localization algorithm with optimal scaling in NLOS wireless propagations. In: Proceedings of the IEEE International Conference on Electronics Information and Emergency Communication, pp. 45–48 (2013)Google Scholar
  22. 22.
    Venkatraman, S., Caffery, J.J., You, H.R.: A novel TOA location algorithm using LOS range estimation for NLOS environments. IEEE Trans. Veh. Technol. 53(5), 1515–1524 (2004)CrossRefGoogle Scholar
  23. 23.
    Chan, Y.T., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)CrossRefGoogle Scholar
  24. 24.
    Wang, X., Wang, Z., O’Dea, B.: A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation. IEEE Trans. Veh. Technol. 52(1), 112–116 (2003)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Guangzhe Liu
    • 1
  • Jingyu Hua
    • 1
  • Feng Li
    • 1
  • Weidang Lu
    • 1
  • Zhijiang Xu
    • 1
  1. 1.College of Information EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations