Advertisement

Sample Delivery Techniques for Serial Crystallography

  • Raymond G. SierraEmail author
  • Uwe WeierstallEmail author
  • Dominik Oberthuer
  • Michihiro Sugahara
  • Eriko Nango
  • So Iwata
  • Alke Meents
Chapter

Abstract

In serial femtosecond crystallography (SFX), protein microcrystals and nanocrystals are introduced into the focus of an X-ray free electron laser (FEL) beam ideally one-by-one in a serial fashion. The high photon density in each pulse is the double-edged sword that necessitates the serial nature of the experiments. The high photon count focused spatially and temporally leads to a diffraction-before-destruction snapshot, but this single snapshot is not enough for a high-resolution three-dimensional structural reconstruction. To recover the structure, more snapshots are required to sample all of reciprocal space from randomly oriented crystal diffraction, and in practice, some redundancy is necessary in these measurements. This chapter explores the different sample delivery techniques developed over the years to help enable serial crystallography experiments.

References

  1. 1.
    Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2(12), 839–843.  https://doi.org/10.1038/nphys461.CrossRefGoogle Scholar
  2. 2.
    Stan, C. A., Milathianaki, D., Laksmono, H., Sierra, R. G., McQueen, T. A., Messerschmidt, M., et al. (2016). Liquid explosions induced by X-ray laser pulses. Nature Physics, 12, 966.  https://doi.org/10.1038/nphys3779.CrossRefGoogle Scholar
  3. 3.
    Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77.  https://doi.org/10.1038/nature09750.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Seibert, M. M., Ekeberg, T., Maia, F. R. N. C., Svenda, M., Andreasson, J., Jönsson, O., et al. (2011). Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332), 78–81.  https://doi.org/10.1038/nature09748.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bogan, M. J., Benner, W. H., Boutet, S., Rohner, U., Frank, M., Barty, A., et al. (2008). Single particle X-ray diffractive imaging. Nano Letters, 8(1), 310–316.  https://doi.org/10.1021/nl072728k.CrossRefPubMedGoogle Scholar
  6. 6.
    Awel, S., Kirian, R. A., Wiedorn, M. O., Beyerlein, K. R., Roth, N., Horke, D. A., et al. (2018). Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography, 51(1), 133–139.  https://doi.org/10.1107/S1600576717018131.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hantke, M. F., Hasse, D., Maia, F. R. N. C., Ekeberg, T., John, K., Svenda, M., et al. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics, 8(12), 943–949.  https://doi.org/10.1038/nphoton.2014.270.CrossRefGoogle Scholar
  8. 8.
    Munke, A., Andreasson, J., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2016). Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data, 3, 160064.  https://doi.org/10.1038/sdata.2016.64.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rayleigh, L. (1878). On the instability of jets. Proceedings of the London Mathematical Society, 1(1), 4 Retrieved from http://plms.oxfordjournals.org/content/s1-10/1/4.full.pdf.CrossRefGoogle Scholar
  10. 10.
    Rayleigh, L. (1892). XVI. On the instability of a cylinder of viscous liquid under capillary force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(207), 145–154.  https://doi.org/10.1080/14786449208620301.CrossRefGoogle Scholar
  11. 11.
    Faubel, M., Schlemmer, S., & Toennies, J. (1988). A molecular beam study of the evaporation of water from a liquid jet. Zeitschrift fur Physik D: Atoms, Molecules and Clusters, 10(2), 269–277 Retrieved from http://www.springerlink.com/index/X6GXW8Q11QV3R085.pdf.CrossRefGoogle Scholar
  12. 12.
    Weierstall, U., Doak, R., Spence, J. C. H., Starodub, D., Shapiro, D., Kennedy, P., et al. (2008). Droplet streams for serial crystallography of proteins. Experiments in Fluids, 44(5), 675–689 Retrieved from http://www.springerlink.com/index/Q7N2L3278806078U.pdf.CrossRefGoogle Scholar
  13. 13.
    DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., et al. (2008). Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D: Applied Physics, 41(19), 195505.  https://doi.org/10.1088/0022-3727/41/19/195505.CrossRefGoogle Scholar
  14. 14.
    White, F., & Corfield, I. (2005). Viscous fluid flow (3rd ed.). New York: McGraw-Hill.Google Scholar
  15. 15.
    Eggers, J., & Villermaux, E. (2008). Physics of liquid jets. Reports on Progress in Physics, 71(1), 1–79.  https://doi.org/10.1088/0034-4885/71/3/036601.CrossRefGoogle Scholar
  16. 16.
    Gonzalez-Tello, P., Camacho, F., & Blazquez, G. (1994). Density and viscosity of concentrated aqueous solutions of polyethylene glycol. Journal of Chemical & Engineering Data, 39(3), 611–614.  https://doi.org/10.1021/je00015a050.CrossRefGoogle Scholar
  17. 17.
    Lee, R. J., & Teja, A. S. (1990). Viscosities of poly(ethylene glycols). Journal of Chemical & Engineering Data, 35(4), 385–387.  https://doi.org/10.1021/je00062a003.CrossRefGoogle Scholar
  18. 18.
    Einstein, A. (1905). On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat. Annalen der Physik, 322, 549–560.  https://doi.org/10.1002/andp.19053220806.CrossRefGoogle Scholar
  19. 19.
    Probstein, R. F. (1994). Physicochemical hydrodynamics. New York: Wiley.  https://doi.org/10.1002/0471725137.CrossRefGoogle Scholar
  20. 20.
    Lomb, L., Steinbrener, J., Bari, S., Beisel, D., Berndt, D., Kieser, C., et al. (2012). An anti-settling sample delivery instrument for serial femtosecond crystallography. Journal of Applied Crystallography, 45(4), 1–5.  https://doi.org/10.1107/S0021889812024557.CrossRefGoogle Scholar
  21. 21.
    Sierra, R. G., Gati, C., Laksmono, H., Dao, E. H., Gul, S., Fuller, F., et al. (2015). Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nature Methods, 13(1), 59–62.  https://doi.org/10.1038/nmeth.3667.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Johansson, L. C., Arnlund, D., White, T. A., Katona, G., Deponte, D. P., Weierstall, U., et al. (2012). Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods, 9(3), 263–265.  https://doi.org/10.1038/nmeth.1867.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oberthuer, D., Knoška, J., Wiedorn, M. O., Beyerlein, K. R., Bushnell, D. A., Kovaleva, E. G., et al. (2017). Double-flow focused liquid injector for efficient serial femtosecond crystallography. Scientific Reports, 7, 44628.  https://doi.org/10.1038/srep44628.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Taylor, G. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 219(1137), 186–203.  https://doi.org/10.1098/rspa.1953.0139.CrossRefGoogle Scholar
  25. 25.
    Taneda, S. (1979). Visualization of separating Stokes flows. Journal of the Physical Society of Japan, 46(6), 1935–1942.  https://doi.org/10.1143/JPSJ.46.1935.CrossRefGoogle Scholar
  26. 26.
    Purcell, E. (1976). Life at low Reynolds number. AIP Conference Proceedings, 45, 3–11.Google Scholar
  27. 27.
    Rayleigh, L. (1879). On the capillary phenomena of jets. Proceedings of the Royal Society of London, 29, 71–97.CrossRefGoogle Scholar
  28. 28.
    Frohn, A., & Roth, N. (2000). Dynamics of droplets. Berlin, Germany: Springer Science & Business Media.CrossRefGoogle Scholar
  29. 29.
    Gañán-Calvo, A. M. (1998). Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Physical Review Letters, 80(2), 285.CrossRefGoogle Scholar
  30. 30.
    Lomb, L., Steinbrener, J., Bari, S., Beisel, D., Berndt, D., Kieser, C., et al. (2012). An anti-settling sample delivery instrument for serial femtosecond crystallography. Journal of Applied Crystallography, 45(4), 674–678.CrossRefGoogle Scholar
  31. 31.
    Weierstall, U., Spence, J. C. H., & Doak, R. B. (2012). Injector for scattering measurements on fully solvated biospecies. The Review of Scientific Instruments, 83(3), 035108. CrossRefGoogle Scholar
  32. 32.
    Nelson, G., Kirian, R. A., Weierstall, U., Zatsepin, N. A., Faragó, T., Baumbach, T., et al. (2016). Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Optics Express, 24(11), 11515–11530.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang, D., Weierstall, U., Pollack, L., & Spence, J. (2014). Double-focusing mixing jet for XFEL study of chemical kinetics. Journal of Synchrotron Radiation, 21(6), 1364–1366.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Weierstall, U., Doak, R. B., & Spence, J. C. H. (2011). A pump-probe XFEL particle injector for hydrated samples. arXiv preprint arXiv:1105.2104.Google Scholar
  35. 35.
    Daurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N. C., Muhlig, K., Seibert, M. M., et al. (2017). Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ, 4(3), 251–262.  https://doi.org/10.1107/S2052252517003591.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Perry, S. L., Guha, S., Pawate, A. S., Bhaskarla, A., Agarwal, V., Nair, S. K., et al. (2013). A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on a Chip, 13(16), 3183–3187.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhu, L., Weierstall, U., Cherezov, V., & Liu, W. (2016). Serial femtosecond crystallography of membrane proteins. In I. Moraes (Ed.), The next generation in membrane protein structure determination (pp. 151–160). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  38. 38.
    Martin-Garcia, J. M., Conrad, C. E., Nelson, G., Stander, N., Zatsepin, N. A., Zook, J., et al. (2017). Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ, 4, 439–454.  https://doi.org/10.1107/S205225251700570X.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tono, K., Nango, E., Sugahara, M., Song, C., Park, J., Tanaka, T., et al. (2015). Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): Application to serial protein crystallography using an X-ray free-electron laser. Journal of Synchrotron Radiation, 22, 532–537.  https://doi.org/10.1107/S1600577515004464.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sugahara, M., Mizohata, E., Nango, E., Suzuki, M., Tanaka, T., Masuda, T., et al. (2015). Grease matrix as a versatile carrier of proteins for serial crystallography. Nature Methods, 12(1), 61–63.CrossRefGoogle Scholar
  41. 41.
    Botha, S., Nass, K., Barends, T. R. M., Kabsch, W., Latz, B., Dworkowski, F., et al. (2015). Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallographica. Section D, Biological Crystallography, 71(2), 387.CrossRefGoogle Scholar
  42. 42.
    Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 1–6.CrossRefGoogle Scholar
  44. 44.
    Kovacsova, G., Grunbein, M. L., Kloos, M., Barends, T. R. M., Schlesinger, R., Heberle, J., et al. (2017). Viscous hydrophilic injection matrices for serial crystallography. IUCrJ, 4, 400–410.  https://doi.org/10.1107/S2052252517005140.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRefGoogle Scholar
  48. 48.
    Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 1–9.CrossRefGoogle Scholar
  50. 50.
    Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Science Advances, 2(9), e1600292.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fromme, R., Ishchenko, A., Metz, M., Chowdhury, S. R., Basu, S., Boutet, S., et al. (2015). Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ, 2(5), 545–551.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    James, D., Wang, D., White, T. A., Zatsepin, N., Nelson, G., Liu, H., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2(2), 168–176.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sierra, R. G., Laksmono, H., Kern, J., Tran, R., Hattne, J., Alonso-Mori, R., et al. (2012). Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica. Section D, Biological Crystallography, 68(11), 1584–1587.  https://doi.org/10.1107/S0907444912038152.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hattne, J., Echols, N., Tran, R., Kern, J., Gildea, R. J., Brewster, A. S., et al. (2014). Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nature Methods, 11(5), 545–548.  https://doi.org/10.1038/nmeth.2887.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kern, J., Alonso-Mori, R., Hellmich, J., Tran, R., Hattne, J., Laksmono, H., et al. (2012). Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 9721–9726.  https://doi.org/10.1073/pnas.1204598109.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., et al. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371.  https://doi.org/10.1038/ncomms5371.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Young, I. D., Ibrahim, M., Chatterjee, R., Gul, S., Fuller, F. D., Koroidov, S., et al. (2016). Structure of photosystem II and substrate binding at room temperature. Nature, 540(7633), 453–457.  https://doi.org/10.1038/nature20161.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Alonso-Mori, R., Kern, J., Gildea, R. J., Sokaras, D., Weng, T.-C., Lassalle-Kaiser, B., et al. (2012). Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19103.  https://doi.org/10.1073/pnas.1211384109.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., et al. (2013). Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340(6131), 491–495.  https://doi.org/10.1126/science.1234273.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kroll, T., Kern, J., Kubin, M., Ratner, D., Gul, S., Fuller, F. D., et al. (2016). X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser. Optics Express, 24(20), 22469.  https://doi.org/10.1364/OE.24.022469.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kubin, M., Kern, J., Gul, S., Kroll, T., Chatterjee, R., Löchel, H., et al. (2017). Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. Structural Dynamics, 4(5), 054307.  https://doi.org/10.1063/1.4986627.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mitzner, R., Rehanek, J., Kern, J., Gul, S., Hattne, J., Taguchi, T., et al. (2013). L-edge X-ray absorption spectroscopy of dilute systems relevant to metalloproteins using an X-ray free-electron laser. Journal of Physical Chemistry Letters, 4, 3641–3647.  https://doi.org/10.1021/jz401837f.CrossRefPubMedGoogle Scholar
  63. 63.
    Colletier, J.-P., Sawaya, M. R., Gingery, M., Rodriguez, J. A., Cascio, D., Brewster, A. S., et al. (2016). De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 539(7627), 43–47.  https://doi.org/10.1038/nature19825.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fernández de la Mora, J. (2007). The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 39(1), 217–243.  https://doi.org/10.1146/annurev.fluid.39.050905.110159.CrossRefGoogle Scholar
  65. 65.
    Gañán-Calvo, A. M., & Barrero, A. (1999). A novel pneumatic technique to generate steady capillary microjets. Journal of Aerosol Science, 30(1), 117–125.  https://doi.org/10.1016/S0021-8502(98)00029-9.CrossRefGoogle Scholar
  66. 66.
    Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716 Retrieved from http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-3-2706. PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T. A., et al. (2012). Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics, 6(1), 35–40.  https://doi.org/10.1038/nphoton.2011.297.CrossRefGoogle Scholar
  68. 68.
    Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364.  https://doi.org/10.1126/science.1217737.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Koopmann, R., Cupelli, K., Redecke, L., Nass, K., DePonte, D. P., White, T. A., et al. (2012). In vivo protein crystallization opens new routes in structural biology. Nature Methods, 9(3), 259–262.  https://doi.org/10.1038/nmeth.1859.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lomb, L., Barends, T. R. M., Kassemeyer, S., Aquila, A., Epp, S., Erk, B., et al. (2011). Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Physical Review B, 84(21), 1–6.  https://doi.org/10.1103/PhysRevB.84.214111.CrossRefGoogle Scholar
  71. 71.
    Garman, E. (1999). Cool data: Quantity AND quality. Acta Crystallographica, Section D: Biological Crystallography, 55(10), 1641–1653.  https://doi.org/10.1107/S0907444999008653.CrossRefGoogle Scholar
  72. 72.
    Garman, E. F., & Owen, R. L. (2006). Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallographica, Section D: Biological Crystallography, 62(1), 32–47.  https://doi.org/10.1107/S0907444905034207.CrossRefGoogle Scholar
  73. 73.
    Ibrahim, M., Chatterjee, R., Hellmich, J., Tran, R., Bommer, M., Yachandra, V. K., et al. (2015). Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures. Structural Dynamics, 2(4), 041705.  https://doi.org/10.1063/1.4919741.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gañán-Calvo, A. M., & Montanero, J. (2009). Revision of capillary cone-jet physics: Electrospray and flow focusing. Physical Review E, 79(6), 1–18.  https://doi.org/10.1103/PhysRevE.79.066305.CrossRefGoogle Scholar
  75. 75.
    Liang, M., Williams, G. J., Messerschmidt, M., Seibert, M. M., Montanez, P. A., Hayes, M., et al. (2015). The coherent X-ray imaging instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22(3), 514–519.  https://doi.org/10.1107/S160057751500449X.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schlichting, I. (2015). Serial femtosecond crystallography: The first five years. IUCrJ, 2, 246.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., et al. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339, 227–230.CrossRefGoogle Scholar
  78. 78.
    Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4, 641–647.CrossRefGoogle Scholar
  79. 79.
    Beyerlein, K. R., Adriano, L., Heymann, M., Kirian, R., Knoška, J., Wilde, F., et al. (2015). Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. The Review of Scientific Instruments, 86, 125104.PubMedCrossRefGoogle Scholar
  80. 80.
    Barends, T. R., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350, 445–450.CrossRefGoogle Scholar
  81. 81.
    Coquelle, N., Sliwa, M., Woodhouse, J., Schirò, G., Adam, V., Aquila, A., et al. (2018). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31–37.CrossRefGoogle Scholar
  82. 82.
    Pande, K., Hutchison, C. D., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352, 725–729.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346, 1242–1246.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kupitz, C., Olmos Jr., J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.CrossRefGoogle Scholar
  85. 85.
    Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541, 242–246.CrossRefGoogle Scholar
  86. 86.
    Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A., & Flores-Mosquera, M. (2007). Focusing capillary jets close to the continuum limit. Nature Physics, 3, 737–742.CrossRefGoogle Scholar
  87. 87.
    Acero, A. J., Ferrera, C., Montanero, J. M., & Gañán-Calvo, A. M. (2012). Focusing liquid microjets with nozzles. Journal of Micromechanics and Microengineering, 22, 065011.CrossRefGoogle Scholar
  88. 88.
    Montanero, J. M., Rebollo-Munoz, N., Herrada, M. A., & Gañán-Calvo, A. M. (2011). Global stability of the focusing effect of fluid jet flows. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83, 036309.PubMedCrossRefGoogle Scholar
  89. 89.
    Vega, E. J., Montanero, J. M., Herrada, M. A., & Gañán-Calvo, A. M. (2010). Global and local instability of flow focusing: The influence of the geometry. Physics of Fluids, 22, 064105.CrossRefGoogle Scholar
  90. 90.
    Schmidt, M. (2013). Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Advances in Condensed Matter Physics, 2013, 1–10.CrossRefGoogle Scholar
  91. 91.
    Calvey, G. D., Katz, A. M., Schaffer, C. B., & Pollack, L. (2016). Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Structural Dynamics, 3, 054301.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chavas, L. M., Gumprecht, L., & Chapman, H. N. (2015). Possibilities for serial femtosecond crystallography sample delivery at future light sources. Structural Dynamics, 2, 041709.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Trebbin, M., Krüger, K., DePonte, D., Roth, S. V., Chapman, H. N., & Förster, S. (2014). Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab on a Chip, 14, 1733–1745.PubMedCrossRefGoogle Scholar
  94. 94.
    Au, A. K., Huynh, W., Horowitz, L. F., & Folch, A. (2016). 3D-printed microfluidics. Angewandte Chemie (International Ed. in English), 55, 3862–3881.CrossRefGoogle Scholar
  95. 95.
    Moffat, K. (2014). Time-resolved crystallography and protein design: Signalling photoreceptors and optogenetics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130568.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130318.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Neutze, R., & Moffat, K. (2012). Time-resolved structural studies at synchrotrons and X-ray free electron lasers: Opportunities and challenges. Current Opinion in Structural Biology, 22, 651–659.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Schlichting, I., & Goody, R. S. (1997). Triggering methods in crystallographic enzyme kinetics. Methods in Enzymology, 277, 467–490.PubMedCrossRefGoogle Scholar
  99. 99.
    Barends, T., White, T. A., Barty, A., Foucar, L., Messerschmidt, M., Alonso-Mori, R., et al. (2015). Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data. Journal of Synchrotron Radiation, 22, 644.PubMedCrossRefGoogle Scholar
  100. 100.
    Brennich, M. E., Nolting, J. F., Dammann, C., Nöding, B., Bauch, S., & Herrmann, H. (2011). Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. Lab on a Chip, 11, 708–716.PubMedCrossRefGoogle Scholar
  101. 101.
    Knight, J., Vishwanath, A., Brody, J., & Austin, R. (1998). Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Physical Review Letters, 80, 3863–3866.CrossRefGoogle Scholar
  102. 102.
    Park, H. Y., Qiu, X., Rhoades, E., Korlach, J., Kwok, L. W., & Zipfel, W. R. (2006). Achieving uniform mixing in a microfluidic device: Hydrodynamic focusing prior to mixing. Analytical Chemistry, 78, 4465–4473.PubMedCrossRefGoogle Scholar
  103. 103.
    Pollack, L., & Doniach, S. (2009). Time-resolved X-ray scattering and RNA folding. Methods in Enzymology, 469, 253–268.PubMedCrossRefGoogle Scholar
  104. 104.
    Pollack, L., Tate, M. W., Darnton, N. C., Knight, J. B., Gruner, S. M., Eaton, W. A., et al. (1999). Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proceedings of the National Academy of Sciences, 96, 10115–10117.CrossRefGoogle Scholar
  105. 105.
    Zahoor, R., Belšak, G., Bajt, S., Weckert, E., & Hajdu, J. (2018). Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluidics and Nanofluidics, 22, 87.  https://doi.org/10.1007/s10404-018-2110-0.CrossRefGoogle Scholar
  106. 106.
    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752–757.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Fukuda, Y., Tse, K. M., Nakane, T., Nakatsu, T., Suzuki, M., Sugahara, M., et al. (2016). Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proceedings of the National Academy of Sciences of the United States of America, 113, 2928–2933.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein–coupled receptors. Science, 342, 1521–1524.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mafuné, F., Miyajima, K., Tono, K., Takeda, Y., Kohno, J. Y., Miyauchi, N., et al. (2016). Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallographica, Section D: Biological Crystallography, 72(Pt 4), 520–523.CrossRefGoogle Scholar
  110. 110.
    Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A. Y., Uervirojnangkoorn, M., et al. (2015). Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature, 525, 62–67.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513, 261–265.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., et al. (2016). A three dimensional movie of structural changes in bacteriorhodopsin. Science, 354, 1552–1557.CrossRefGoogle Scholar
  113. 113.
    Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 12314.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., et al. (2017). Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature, 543, 131–135.CrossRefGoogle Scholar
  115. 115.
    Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 24484.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sugahara, M., Nakane, T., Masuda, T., Suzuki, M., Inoue, S., Song, C., et al. (2017). Hydroxyethyl cellulose matrix applied to serial crystallography. Scientific Reports, 7, 703.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hope, H. (1988). Acta Crystallographica. Section B, 44, 22–26.CrossRefGoogle Scholar
  118. 118.
    Nakane, T., Song, C., Suzuki, M., Nango, E., Kobayashi, J., Masuda, T., et al. (2015). Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallographica Section D: Structural Biology, 71, 2519–2525.CrossRefGoogle Scholar
  119. 119.
    Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Colletier, J. P., Sliwa, M., Gallat, F. X., Sugahara, M., Guillon, V., Schirò, G., et al. (2016). Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. Journal of Physical Chemistry Letters, 7, 882–887.PubMedCrossRefGoogle Scholar
  121. 121.
    Nakane, T., Hanashima, S., Suzuki, M., Saiki, H., Hayashi, T., Kakinouchi, K., et al. (2016). Membrane protein structure determination by SAD, SIR or SIRAS phasing in serial femtosecond crystallography using a novel iododetergent. Proceedings of the National Academy of Sciences of the United States of America, 113, 13039–13044.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Edlund, P., Takala, H., Claesson, E., Henry, L., Dods, R., Lehtivuori, H., et al. (2016). The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography. Scientific Reports, 6, 35279.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Masuda, T., Suzuki, M., Inoue, S., Song, C., Nakane, T., Nango, E., et al. (2017). Atomic resolution structure of serine protease proteinase K at ambient temperature. Scientific Reports, 7, 45604.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cheng, A., Hummel, B., Qiu, H., & Caffrey, M. (1998). A simple mechanical mixer for small viscous lipid-containing samples. Chemistry and Physics of Lipids, 95, 11–21.CrossRefGoogle Scholar
  125. 125.
    Barends, T. R. M., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505, 244–247.PubMedCrossRefGoogle Scholar
  126. 126.
    Hunter, M. S., Yoon, C. H., DeMirci, H., Sierra, R. G., Dao, E. H., Ahmadi, R., et al. (2016). Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nature Communications, 7, 13388.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3, 180–191.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Thorn, A., & Sheldrick, G. M. (2011). ANODE: Anomalous and heavy-atom density calculation. Journal of Applied Crystallography, 44(6), 1285–1287.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Stellato, F., Oberthür, D., Liang, M., Bean, R., Gati, C., Yefanov, O., et al. (2014). Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ, 1, 204–212.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130337.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Nakane, T., Joti, Y., Tono, K., Yabashi, M., Nango, E., Iwata, S., et al. (2016). Data processing pipeline for serial femtosecond crystallography at SACLA. Journal of Applied Crystallography, 49, 1035–1041.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Roessler, C. G., Agarwal, R., Allaire, M., Alonso-Mori, R., Andi, B., Bachega, J. F. R., et al. (2016). Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure, 24, 631–640.  https://doi.org/10.1016/j.str.2016.02.007.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Beyerlein, K. R., Dierksmeyer, D., Mariani, V., Kuhn, M., Sarrou, I., Ottaviano, A., et al. (2017). Mix-and-diffuse serial synchrotron crystallography. IUCrJ, 4, 769–777.  https://doi.org/10.1107/S2052252517013124.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D., Lebrette, H., et al. (2017). Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 14(4), 443–449.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kok, B., Forbush, B., & Mcgloin, M. (1970). Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochemistry and Photobiology, 11(6), 457–475.  https://doi.org/10.1111/j.1751-1097.1970.tb06017.x.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Hunter, M. S., Segelke, B., Messerschmidt, M., Williams, G. J., Zatsepin, N. A., Barty, A., et al. (2014). Fixed-target protein serial microcrystallography with an x-ray free electron laser. Scientific Reports, 4, 6026.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2014). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 3052.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Murray, T. D., Lyubimov, A. Y., Ogata, C. M., Vo, H., Uervirojnangkoorn, M., Brunger, A. T., et al. (2015). A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallographica Section D: Biological Crystallography, 71, 1987–1997.CrossRefGoogle Scholar
  139. 139.
    Cohen, A. E., Soltis, S. M., González, A., Aguila, L., Alonso-Mori, R., Barnes, C. O., et al. (2014). Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 111, 17122–17127.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Roedig, P., Vartiainen, I., Duman, R., Panneerselvam, S., Stübe, N., Lorbeer, O., et al. (2015). A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Scientific Reports, 5, 10451.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Zarrine-Afsar, A., Barends, T. R. M., Müller, C., Fuchs, M. R., Lomb, L., Schlichting, I., et al. (2012). Crystallography on a chip. Acta Crystallographica Section D: Biological Crystallography, 68, 321–323.CrossRefGoogle Scholar
  142. 142.
    Mueller, C., Marx, A., Epp, S. W., Zhong, Y., Kuo, A., Balo, A. R., et al. (2015). Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Structural Dynamics, 2, 054302. PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Feld, G. K., Heymann, M., Benner, W. H., Pardini, T., Tsai, C. J., Boutet, S., et al. (2015). Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography. Journal of Applied Crystallography, 48(4), 1072–1079.CrossRefGoogle Scholar
  144. 144.
    Lyubimov, A. Y., Murray, T. D., Koehl, A., Araci, I. E., Uervirojnangkoorn, M., Zeldin, O. B., et al. (2015). Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallographica Section D, 71(4), 928–940.CrossRefGoogle Scholar
  145. 145.
    Roedig, P., Ginn, H. M., Pakendorf, T., Sutton, G., Harlos, K., Walter, T. S., et al. (2017). High-speed fixed-target serial virus crystallography. Nature Methods, 14, 805.  https://doi.org/10.1038/nmeth.4335.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Opara, N., Martiel, I., Arnold, S. A., Braun, T., Stahlberg, H., Makita, M., et al. (2017). Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. Journal of Applied Crystallography, 50, 909–918.CrossRefGoogle Scholar
  147. 147.
    Meents, A., Gutmann, S., Wagner, A., & Schulze-Briese, C. (2009). Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proceedings of the National Academy of Sciences, 107(3), 1094–1099.  https://doi.org/10.1073/pnas.0905481107.CrossRefGoogle Scholar
  148. 148.
    Owen, R. L., Rudiño-Piñera, E., & Garman, E. F. (2006). Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci USA, 103(13), 4912–4917.PubMedCrossRefGoogle Scholar
  149. 149.
    Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., et al. (2015). Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature, 517(7532), 99–103.  https://doi.org/10.1038/nature13991.CrossRefGoogle Scholar
  150. 150.
    Fraser, J. S., van den Bedemb, H., Samelsona, A. J., Langa, P. T., Holton, J. M., et al. (2011). Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16247–16252.  https://doi.org/10.1073/pnas.1111325108.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Coquelle, N., Brewster, A. S., Kapp, U., Shilova, A., Weinhausen, B., Burghammer, M., et al. (2015). Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallographica Section D: Biological Crystallography, 71(Pt 5), 1184–1196.  https://doi.org/10.1107/S1399004715004514 Epub 2015 Apr 25.CrossRefGoogle Scholar
  152. 152.
    Sui, S., Wang, Y., Kolewe, K. W., Srajer, V., Henning, R., Schiffman, J. D., et al. (2016). Graphene-based microfluidics for serial crystallography. Lab on a Chip, 16(16), 3082–3096.  https://doi.org/10.1039/c6lc00451b.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Kiefersauer, R., Than, M. E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., et al. (2000). Journal of Applied Crystallography, 33, 1223–1230.CrossRefGoogle Scholar
  154. 154.
    Sanchez Weatherby, J., Bowler, M. W., Huet, J., Gobbo, A., Felisaz, F., Lavault, B., et al. (2009). Improving diffraction by humidity control: A novel device compatible with X-ray beamlines. Acta Crystallographica. Section D, Biological Crystallography, 65, 1237–1246.PubMedCrossRefGoogle Scholar
  155. 155.
    Roedig, P., Duman, R., Sanchez-Weatherby, J., Vartiainen, I., Burkhardt, A., Warmer, M., et al. (2016). Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. Journal of Applied Crystallography, 49, 968–975.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Meents, A., Wiedorn, M. O., Srajer, V., Henning, R., Sarrou, I., Bergtholdt, J., et al. (2017). Pink beam serial crystallography. Nature Communications, 8, 1281.  https://doi.org/10.1038/s41467-017-01417-3.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Sherrell, D. A., Foster, A. J., Hudson, L., Nutter, B., O’Hea, J., Nelson, S., et al. (2015). A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources. Journal of Synchrotron Radiation, 22, 1372–1378.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Owen, R. L., Axford, D., Sherrell, D. A., Kuo, A., Ernst, O. P., Schulz, E. C., et al. (2017). Low-dose fixed-target serial synchrotron crystallography. Acta Crystallographica Section D: Biological Crystallography, 73, 373–378.CrossRefGoogle Scholar
  159. 159.
    Abdallah, B. G., Zatsepin, N. a., Roy-Chowdhury, S., Coe, J., Conrad, C. E., Dörner, K., et al. (2015). Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Structural Dynamics, 2, 041719.  https://doi.org/10.1063/1.4928688.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Koralek, J. D., Kim, J. B., Brůža, P., Curry, C. B., Chen, Z., Bechtel, H. A., et al. (2018). Generation and characterization of ultrathin free-flowing liquid sheets. Nature Communications, 9(1), 1–8.  https://doi.org/10.1038/s41467-018-03696-w.CrossRefGoogle Scholar
  161. 161.
    Wiedorn, M. O., Awel, S., Morgan, A. J., Ayyer, K., Gevorkov, Y., Fleckenstein, H., et al. (2018). Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 5(5), 574–584.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Raymond G. Sierra
    • 1
    Email author
  • Uwe Weierstall
    • 2
    Email author
  • Dominik Oberthuer
    • 3
  • Michihiro Sugahara
    • 4
    • 5
  • Eriko Nango
    • 4
    • 5
  • So Iwata
    • 4
    • 5
  • Alke Meents
    • 3
  1. 1.Hard X-Ray Department, LCLSSLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.Department of PhysicsArizona State UniversityTempeUSA
  3. 3.Center for Free-Electron Laser ScienceGerman Electron Synchrotron DESYHamburgGermany
  4. 4.RIKEN SPring-8 CenterSayo-gun, HyogoJapan
  5. 5.Department of Cell BiologyGraduate School of Medicine, Kyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations