Advertisement

Serial Femtosecond Crystallography (SFX): An Overview

  • Mark S. Hunter
  • Petra Fromme
Chapter

Abstract

X-ray crystallography is a very powerful tool to determine structures of biological macromolecules at the atomic and molecular level and thereby enables insights into their function. Unfortunately, irradiating biological samples with X-rays is an inherently damaging and unavoidable process in conventional X-ray crystallography. The unique properties of X-ray free electron lasers (FELs), with pulse duration in the femtosecond range, allow data collection at time scales shorter than, or equivalent to, the time scales of the X-ray induced radiation damage pathways, offering a plausible way to diminish the ill effects of conventional radiation damage in biological structure determination. However, the high intensities of the X-ray FEL beam necessitated the development of novel techniques for sample preparation, characterization, introduction, data collection, and analysis. Serial femtosecond crystallography (SFX) represents a set of techniques developed to enable X-ray crystallography experiments at X-ray FELs, which encompasses multiple developments in sample introduction and data collection. This chapter summarizes the early experiments that demonstrated the SFX methods along with more recent developments and accomplishments that will be discussed in more detail in the following chapters of this book.

Notes

Acknowledgements

This chapter describes the work of a very large number of people at SLAC National Accelerator Laboratory, the users of LCLS, and the wider community. Use of the LCLS is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract no. DE-AC02-76SF00515.

References

  1. 1.
    Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., et al. (2015). The linac coherent light source single particle imaging road map. Structural Dynamics, 2(4), 041701.  https://doi.org/10.1063/1.4918726.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716.  https://doi.org/10.1364/OE.20.002706.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arnlund, D., Johansson, L. C., Wickstrand, C., Barty, A., Williams, G. J., Malmerberg, E., & Neutze, R. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.  https://doi.org/10.1038/nmeth.3067 https://www.nature.com/articles/nmeth.3067#supplementary-information.CrossRefGoogle Scholar
  4. 4.
    Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530(7589), 202–206.  https://doi.org/10.1038/nature16949.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barends, T. R., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505(7482), 244–247.  https://doi.org/10.1038/nature12773.CrossRefPubMedGoogle Scholar
  6. 6.
    Barends, T. R. M., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science.  https://doi.org/10.1126/science.aac5492.CrossRefGoogle Scholar
  7. 7.
    Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T. A., et al. (2012). Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics, 6(1), 35–40. http://www.nature.com/nphoton/journal/v6/n1/abs/nphoton.2011.297.html#supplementary-information.
  8. 8.
    Barty, A., Kirian, R. A., Maia, F. R., Hantke, M., Yoon, C. H., White, T. A., & Chapman, H. (2014). Cheetah : Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. Journal of Applied Crystallography, 47(Pt 3), 1118–1131.  https://doi.org/10.1107/S1600576714007626.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Science Advances, 2(9).  https://doi.org/10.1126/sciadv.1600292.CrossRefGoogle Scholar
  10. 10.
    Botha, S., Nass, K., Barends, T. R. M., Kabsch, W., Latz, B., Dworkowski, F., et al. (2015). Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallographica Section D, 71(2), 387–397.  https://doi.org/10.1107/S1399004714026327.CrossRefGoogle Scholar
  11. 11.
    Boutet, S., Lomb, L., Williams, G. J., Barends, T. R., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364.  https://doi.org/10.1126/science.1217737.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Caffrey, M. (2003). Membrane protein crystallization. Journal of Structural Biology, 142(1), 108–132.  https://doi.org/10.1016/S1047-8477(03)00043-1.CrossRefPubMedGoogle Scholar
  13. 13.
    Caspar, D. L. D., Clarage, J., Salunke, D. M., & Clarage, M. (1988). Liquid-like movements in crystalline insulin. Nature, 332(6165), 659–662.CrossRefGoogle Scholar
  14. 14.
    Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2(12), 839–843.CrossRefGoogle Scholar
  15. 15.
    Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77.  https://doi.org/10.1038/nature09750.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chapman, H. N., Hau-Riege, S. P., Bogan, M. J., Bajt, S., Barty, A., Boutet, S., et al. (2007). Femtosecond time-delay X-ray holography. Nature, 448(7154), 676–679. CrossRefGoogle Scholar
  17. 17.
    Cho, H. S., Dashdorj, N., Schotte, F., Graber, T., Henning, R., & Anfinrud, P. (2010). Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering. Proceedings of the National Academy of Sciences, 107(16), 7281–7286.  https://doi.org/10.1073/pnas.1002951107.CrossRefGoogle Scholar
  18. 18.
    Chollet, M., Alonso-Mori, R., Cammarata, M., Damiani, D., Defever, J., Delor, J. T., et al. (2015). The X-ray pump–probe instrument at the Linac coherent light source. Journal of Synchrotron Radiation, 22(3), 503–507.  https://doi.org/10.1107/S1600577515005135.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cohen, A. E., Soltis, S. M., González, A., Aguila, L., Alonso-Mori, R., Barnes, C. O., et al. (2014). Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences, 111(48), 17122–17127.  https://doi.org/10.1073/pnas.1418733111.CrossRefGoogle Scholar
  20. 20.
    Colletier, J.-P., Sawaya, M. R., Gingery, M., Rodriguez, J. A., Cascio, D., Brewster, A. S., & Eisenberg, D. S. (2016). De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 539, 43.  https://doi.org/10.1038/nature19825 https://www.nature.com/articles/nature19825#supplementary-information.CrossRefGoogle Scholar
  21. 21.
    Colletier, J. P. (n.d.). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry.Google Scholar
  22. 22.
    Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(Pt 4), 421–430.  https://doi.org/10.1107/S2052252515009811.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    DePonte, D. P., Doak, R. B., Hunter, M., Liu, Z., Weierstall, U., & Spence, J. C. H. (2009). SEM imaging of liquid jets. Micron, 40(4), 507–509.  https://doi.org/10.1016/j.micron.2008.12.009.CrossRefPubMedGoogle Scholar
  24. 24.
    DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., & Doak, R. B. (2008). Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D: Applied Physics, 41(19), 195505.CrossRefGoogle Scholar
  25. 25.
    Dörner, K., Martin-Garcia, J. M., Kupitz, C., Gong, Z., Mallet, T. C., Chen, L., et al. (2016). Characterization of protein Nanocrystals based on the reversibility of crystallization. Crystal Growth & Design, 16(7), 3838–3845.  https://doi.org/10.1021/acs.cgd.6b00384.CrossRefGoogle Scholar
  26. 26.
    Doucet, J., & Benoit, J. P. (1987). Molecular dynamics studied by analysis of the X-ray diffuse scattering from lysozyme crystals. Nature, 325(6105), 643–646.CrossRefGoogle Scholar
  27. 27.
    Drenth, J. (2007). Principles of protein X-ray crystallography (3rd ed.). New York: Springer-Verlag.Google Scholar
  28. 28.
    Echalier, A., Glazer, R. L., Fulop, V., & Geday, M. A. (2004). Assessing crystallization droplets using birefringence. Acta Crystallographica Section D, 60(4), 696–702.  https://doi.org/10.1107/S0907444904003154.CrossRefGoogle Scholar
  29. 29.
    Ekeberg, T., Svenda, M., Abergel, C., Maia, F. R. N. C., Seltzer, V., Claverie, J.-M., et al. (2015). Three-dimensional reconstruction of the Giant Mimivirus particle with an X-ray free-Electron laser. Physical Review Letters, 114(9), 098102.CrossRefGoogle Scholar
  30. 30.
    Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4(9), 641–647.  https://doi.org/10.1038/nphoton.2010.176.CrossRefGoogle Scholar
  31. 31.
    Faure, P., Micu, A., Perahia, D., Doucet, J., Smith, J. C., & Benoit, J. P. (1994). Correlated intramolecular motions and diffuse x-ray scattering in lysozyme. Nature Structural & Molecular Biology, 1(2), 124–128.CrossRefGoogle Scholar
  32. 32.
    Ferguson, K. R., Bucher, M., Bozek, J. D., Carron, S., Castagna, J.-C., Coffee, R., et al. (2015). The atomic, molecular and optical science instrument at the Linac coherent light source. Journal of Synchrotron Radiation, 22(3), 492–497.  https://doi.org/10.1107/S1600577515004646.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Foadi, J., Aller, P., Alguel, Y., Cameron, A., Axford, D., Owen, R. L., et al. (2013). Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 69(Pt 8), 1617–1632.  https://doi.org/10.1107/S0907444913012274.CrossRefGoogle Scholar
  34. 34.
    Frank, M., Carlson, D. B., Hunter, M. S., Williams, G. J., Messerschmidt, M., Zatsepin, N. A., et al. (2014). Femtosecond X-ray diffraction from two-dimensional protein crystals. IUCrJ, 1(2), 95–100.  https://doi.org/10.1107/S2052252514001444.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fromme, R., Ishchenko, A., Metz, M., Chowdhury, S. R., Basu, S., Boutet, S., et al. (2015). Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ, 2(5), 545–551.  https://doi.org/10.1107/S2052252515013160.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fukuda, Y., Tse, K. M., Nakane, T., Nakatsu, T., Suzuki, M., Sugahara, M., et al. (2016). Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proceedings of the National Academy of Sciences, 113(11), 2928–2933.  https://doi.org/10.1073/pnas.1517770113.CrossRefGoogle Scholar
  37. 37.
    Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D., Lebrette, H., & Yano, J. (2017). Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 14(4), 443–449.  https://doi.org/10.1038/nmeth.4195 http://www.nature.com/nmeth/journal/v14/n4/abs/nmeth.4195.html#supplementary-information.CrossRefGoogle Scholar
  38. 38.
    Gañán-Calvo, A. M. (1998). Generation of steady liquid microthreads and Micron-sized Monodisperse sprays in gas streams. Physical Review Letters, 80(2), 285–288.CrossRefGoogle Scholar
  39. 39.
    Garman, E. (2010). Radiation damage in macromolecular crystallography: What is it and why should we care? Acta Crystallographica Section D, 66(4), 339–351.  https://doi.org/10.1107/S0907444910008656.CrossRefGoogle Scholar
  40. 40.
    Ginn, H. M., Brewster, A. S., Hattne, J., Evans, G., Wagner, A., Grimes, J. M., et al. (2015). A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallographica Section D, 71(6), 1400–1410.  https://doi.org/10.1107/S1399004715006902.CrossRefGoogle Scholar
  41. 41.
    Gorel, A., Motomura, K., Fukuzawa, H., Doak, R. B., Grünbein, M. L., Hilpert, M., et al. (2017). Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability. Nature Communications, 8(1), 1170.  https://doi.org/10.1038/s41467-017-00754-7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Graewert, M. A., & Svergun, D. I. (2013). Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Current Opinion in Structural Biology, 23(5), 748–754.  https://doi.org/10.1016/j.sbi.2013.06.007.CrossRefPubMedGoogle Scholar
  43. 43.
    Gualtieri, E. J., Guo, F., Kissick, D. J., Jose, J., Kuhn, R. J., Jiang, W., & Simpson, G. J. (2011). Detection of membrane protein two-dimensional crystals in living cells. Biophysical Journal, 100(1), 207–214.  https://doi.org/10.1016/j.bpj.2010.10.051.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Guizar-Sicairos, M., Johnson, I., Diaz, A., Holler, M., Karvinen, P., Stadler, H.-C., et al. (2014). High-throughput ptychography using Eiger: Scanning X-ray nano-imaging of extended regions. Optics Express, 22(12), 14859–14870.  https://doi.org/10.1364/OE.22.014859.CrossRefPubMedGoogle Scholar
  45. 45.
    Hendrickson, W. A. (2014). Anomalous diffraction in crystallographic phase evaluation. Quarterly Reviews of Biophysics, 47(1), 49–93.  https://doi.org/10.1017/S0033583514000018.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hunter, M. S., DePonte, D. P., Shapiro, D. A., Kirian, R. A., Wang, X., Starodub, D., et al. (2011). X-ray diffraction from membrane protein Nanocrystals. Biophysical Journal, 100(1), 198–206.  https://doi.org/10.1016/j.bpj.2010.10.049.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hunter, M. S., Yoon, C. H., DeMirci, H., Sierra, R. G., Dao, E. H., Ahmadi, R., & Boutet, S. (2016). Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nature Communications, 7, 13388.  https://doi.org/10.1038/ncomms13388 http://www.nature.com/articles/ncomms13388#supplementary-information.
  48. 48.
    Johansson, L. C., Arnlund, D., White, T. A., Katona, G., DePonte, D. P., Weierstall, U., & Neutze, R. (2012). Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods, 9(3), 263–265. http://www.nature.com/nmeth/journal/v9/n3/abs/nmeth.1867.html#supplementary-information. CrossRefGoogle Scholar
  49. 49.
    Jung, Y. O., Lee, J. H., Kim, J., Schmidt, M., Moffat, K., Šrajer, V., & Ihee, H. (2013). Volume-conserving trans–cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nature Chemistry, 5(3), 212–220. http://www.nature.com/nchem/journal/v5/n3/abs/nchem.1565.html#supplementary-information.CrossRefGoogle Scholar
  50. 50.
    Kam, Z., Koch, M. H. J., & Bordas, J. (1981). Fluctuation X-ray scattering from biological particles in frozen solution by using synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America, 78(6), 3559–3562.CrossRefGoogle Scholar
  51. 51.
    Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., & Yachandra, V. K. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371.  https://doi.org/10.1038/ncomms5371 https://www.nature.com/articles/ncomms5371#supplementary-information.
  52. 52.
    Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C. H., Hunter, M., et al. (2010). Femtosecond protein nanocrystallography—Data analysis methods. Optics Express, 18(6), 5713–5723.  https://doi.org/10.1364/OE.18.005713.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kirian, R. A., White, T. A., Holton, J. M., Chapman, H. N., Fromme, P., Barty, A., et al. (2011). Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallographica Section A, 67(2), 131–140.  https://doi.org/10.1107/S0108767310050981.CrossRefGoogle Scholar
  54. 54.
    Kissick, D. J., Gualtieri, E. J., Simpson, G. J., & Cherezov, V. (2010). Nonlinear optical imaging of integral membrane protein crystals in Lipidic Mesophases. Analytical Chemistry, 82(2), 491–497.  https://doi.org/10.1021/ac902139w.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of Chiral crystals. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 4, 419–437.  https://doi.org/10.1146/annurev.anchem.111808.073722.CrossRefGoogle Scholar
  56. 56.
    Koopmann, R., Cupelli, K., Redecke, L., Nass, K., DePonte, D. P., White, T. A., & Duszenko, M. (2012). In vivo protein crystallization opens new routes in structural biology. Natural Methods, 9(3), 259–262. http://www.nature.com/nmeth/journal/v9/n3/abs/nmeth.1859.html#supplementary-information.CrossRefGoogle Scholar
  57. 57.
    Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., & Fromme, P. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.  https://doi.org/10.1038/nature13453 http://www.nature.com/nature/journal/v513/n7517/abs/nature13453.html#supplementary-information.CrossRefGoogle Scholar
  58. 58.
    Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., & Schmidt, M. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.  https://doi.org/10.1063/1.4972069.CrossRefGoogle Scholar
  59. 59.
    Landau, E. M., & Rosenbusch, J. P. (1996). Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proceedings of the National Academy of Sciences, 93(25), 14532–14535.CrossRefGoogle Scholar
  60. 60.
    Levantino, M., Schirò, G., Lemke, H. T., Cottone, G., Glownia, J. M., Zhu, D., & Cammarata, M. (2015). Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nature Communications, 6, 6772.  https://doi.org/10.1038/ncomms7772 https://www.nature.com/articles/ncomms7772#supplementary-information.
  61. 61.
    Liang, M., Williams, G. J., Messerschmidt, M., Seibert, M. M., Montanez, P. A., Hayes, M., et al. (2015). The coherent X-ray imaging instrument at the Linac coherent light source. Journal of Synchrotron Radiation, 22(Pt 3), 514–519.  https://doi.org/10.1107/S160057751500449X.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.  https://doi.org/10.1126/science.1244142.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lomb, L., Barends, T. R. M., Kassemeyer, S., Aquila, A., Epp, S. W., Erk, B., et al. (2011). Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Physical Review B, 84(21), 214111.CrossRefGoogle Scholar
  64. 64.
    Madden, J. T., DeWalt, E. L., & Simpson, G. J. (2011). Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallographica Section D, 67(10), 839–846.  https://doi.org/10.1107/S0907444911028253.CrossRefGoogle Scholar
  65. 65.
    Malkin, A. J., Kuznetsov, Y. G., Land, T. A., DeYoreo, J. J., & McPherson, A. (1995). Mechanisms of growth for protein and virus crystals. Nature Structural & Molecular Biology, 2(11), 956–959.CrossRefGoogle Scholar
  66. 66.
    Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14), 140101.CrossRefGoogle Scholar
  67. 67.
    Martin-Garcia, J. M., Conrad, C. E., Nelson, G., Stander, N., Zatsepin, N. A., Zook, J., et al. (2017). Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ, 4(4), 439–454.  https://doi.org/10.1107/S205225251700570X.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Moffat, K. (2001). Time-resolved biochemical crystallography: A mechanistic perspective. Chemical Reviews, 101(6), 1569–1582.  https://doi.org/10.1021/cr990039q.CrossRefGoogle Scholar
  69. 69.
    Nakane, T., Hanashima, S., Suzuki, M., Saiki, H., Hayashi, T., Kakinouchi, K., et al. (2016). Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 13039–13044.  https://doi.org/10.1073/pnas.1602531113.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nakane, T., Song, C., Suzuki, M., Nango, E., Kobayashi, J., Masuda, T., et al. (2015). Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallographica Section D, 71(12), 2519–2525.  https://doi.org/10.1107/S139900471501857X.CrossRefGoogle Scholar
  71. 71.
    Nass, K., Meinhart, A., Barends, T., Foucar, L., Gorel, A., Aquila, A., et al. (2016a). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3, 1–12.CrossRefGoogle Scholar
  72. 72.
    Nass, K., Meinhart, A., Barends, T. R. M., Foucar, L., Gorel, A., Aquila, A., et al. (2016b). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3(3), 180–191.  https://doi.org/10.1107/S2052252516002980.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nave, C. (1998). A description of imperfections in protein crystals. Acta Crystallographica Section D, 54(5), 848–853.  https://doi.org/10.1107/S0907444998001875.CrossRefGoogle Scholar
  74. 74.
    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.  https://doi.org/10.1038/35021099.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Nogly, P., James, D., Wang, D., White, T. A., Zatsepin, N., Shilova, A., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2(2), 168–176.  https://doi.org/10.1107/S2052252514026487.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Oberthuer, D., Knoška, J., Wiedorn, M. O., Beyerlein, K. R., Bushnell, D. A., Kovaleva, E. G., et al. (2017). Double-flow focused liquid injector for efficient serial femtosecond crystallography. 7, 44628.  https://doi.org/10.1038/srep44628 http://dharmasastra.live.cf.private.springer.com/articles/srep44628#supplementary-information
  77. 77.
    Owen, R. L., Rudiño-Piñera, E., & Garman, E. F. (2006). Experimental determination of the radiation dose limit for cryocooled protein crystals. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4912–4917.  https://doi.org/10.1073/pnas.0600973103.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Padayatti, P., Palczewska, G., Sun, W., Palczewski, K., & Salom, D. (2012). Imaging of protein crystals with two-photon microscopy. Biochemistry, 51(8), 1625–1637.  https://doi.org/10.1021/bi201682q.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Pande, K., Hutchison, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.  https://doi.org/10.1126/science.aad5081.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Perez, J., Faure, P., & Benoit, J.-P. (1996). Molecular rigid-body displacements in a tetragonal Lysozyme crystal confirmed by X-ray diffuse scattering. Acta Crystallographica Section D, 52(4), 722–729.  https://doi.org/10.1107/S0907444996002594.CrossRefGoogle Scholar
  81. 81.
    Rasmussen, S. G. F., Choi, H.-J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., & Kobilka, B. K. (2007). Crystal structure of the human [bgr]2 adrenergic G-protein-coupled receptor. Nature, 450(7168), 383–387. http://www.nature.com/nature/journal/v450/n7168/suppinfo/nature06325_S1.html.CrossRefGoogle Scholar
  82. 82.
    Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., et al. (2013). Natively inhibited Trypanosoma brucei Cathepsin B structure determined by using an X-ray laser. Science, 339(6116), 227–230.  https://doi.org/10.1126/science.1229663.CrossRefGoogle Scholar
  83. 83.
    Roedig, P., Ginn, H. M., Pakendorf, T., Sutton, G., Harlos, K., Walter, T. S., et al. (2017). High-speed fixed-target serial virus crystallography. Natural Methods., advance online publication, 14, 805–810.  https://doi.org/10.1038/nmeth.4335 http://www.nature.com/nmeth/journal/vaop/ncurrent/abs/nmeth.4335.html#supplementary-information.CrossRefGoogle Scholar
  84. 84.
    Rossmann, M. G. (1990). The molecular replacement method. Acta Crystallographica. Section A, 46(Pt 2), 73–82.Google Scholar
  85. 85.
    Rupp, B. (2013). Macromolecular crystallography: Overview. In G. C. K. Roberts (Ed.), Encyclopedia of biophysics (pp. 1346–1353). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  86. 86.
    Schlichting, I. (2015). Serial femtosecond crystallography: The first five years. IUCrJ, 2(Pt 2), 246–255.  https://doi.org/10.1107/S205225251402702X.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Schlichting, I., & Miao, J. (2012). Emerging opportunities in structural biology with X-ray free-electron lasers. Current Opinion in Structural Biology, 22(5), 613–626.  https://doi.org/10.1016/j.sbi.2012.07.015.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Schmidt, M. (2013). Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Advances in Condensed Matter Physics, 2013, 10.  https://doi.org/10.1155/2013/167276.CrossRefGoogle Scholar
  89. 89.
    Schotte, F., Soman, J., Olson, J. S., Wulff, M., & Anfinrud, P. A. (2004). Picosecond time-resolved X-ray crystallography: Probing protein function in real time. Journal of Structural Biology, 147(3), 235–246.  https://doi.org/10.1016/j.jsb.2004.06.009.CrossRefPubMedGoogle Scholar
  90. 90.
    Seibert, M. M., Ekeberg, T., Maia, F. R. N. C., Svenda, M., Andreasson, J., Jonsson, O., et al. (2011). Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332), 78–81.CrossRefGoogle Scholar
  91. 91.
    Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., et al. (2005). Biological imaging by soft x-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 102(43), 15343–15346.  https://doi.org/10.1073/pnas.0503305102.CrossRefGoogle Scholar
  92. 92.
    Shapiro, D. A., Chapman, H. N., DePonte, D., Doak, R. B., Fromme, P., Hembree, G., et al. (2008). Powder diffraction from a continuous microjet of submicrometer protein crystals. Journal of Synchrotron Radiation, 15(6), 593–599.  https://doi.org/10.1107/S0909049508024151.CrossRefPubMedGoogle Scholar
  93. 93.
    Sierra, R. G., Gati, C., Laksmono, H., Dao, E. H., Gul, S., Fuller, F., et al. (2016). Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nature Methods, 13(1), 59–62.  https://doi.org/10.1038/nmeth.3667.CrossRefGoogle Scholar
  94. 94.
    Sierra, R. G., Laksmono, H., Kern, J., Tran, R., Hattne, J., Alonso-Mori, R., et al. (2012). Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica Section D, 68(11), 1584–1587.  https://doi.org/10.1107/S0907444912038152.CrossRefGoogle Scholar
  95. 95.
    Spence, J. C. H., & Chapman, H. N. (2014). The birth of a new field. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1647).  https://doi.org/10.1098/rstb.2013.0309.CrossRefGoogle Scholar
  96. 96.
    Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T., et al. (2011). Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19(4), 2866–2873.  https://doi.org/10.1364/OE.19.002866.CrossRefPubMedGoogle Scholar
  97. 97.
    Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., & Wang, Y. X. (2016). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature., advance online publication, 541(7636), 242–246.  https://doi.org/10.1038/nature20599 http://www.nature.com/nature/journal/vaap/ncurrent/abs/nature20599.html#supplementary-information.CrossRefGoogle Scholar
  98. 98.
    Stan, C. A., Milathianaki, D., Laksmono, H., Sierra, R. G., McQueen, T. A., Messerschmidt, M., & Boutet, S. (2016). Liquid explosions induced by X-ray laser pulses. Nature Physics, 12(10), 966–971.  https://doi.org/10.1038/nphys3779 http://www.nature.com/nphys/journal/v12/n10/abs/nphys3779.html#supplementary-information.CrossRefGoogle Scholar
  99. 99.
    Stevens, R. C., Cherezov, V., Katritch, V., Abagyan, R., Kuhn, P., Rosen, H., & Wuthrich, K. (2013). The GPCR network: A large-scale collaboration to determine human GPCR structure and function. Nature Reviews. Drug Discovery, 12(1), 25–34.CrossRefGoogle Scholar
  100. 100.
    Stevenson, H. P., DePonte, D. P., Makhov, A. M., Conway, J. F., Zeldin, O. B., Boutet, S., & Cohen, A. E. (2014a). Transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1647).  https://doi.org/10.1098/rstb.2013.0322.CrossRefGoogle Scholar
  101. 101.
    Stevenson, H. P., Makhov, A. M., Calero, M., Edwards, A. L., Zeldin, O. B., Mathews, I. I., et al. (2014b). Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proceedings of the National Academy of Sciences, 111(23), 8470–8475.  https://doi.org/10.1073/pnas.1400240111.CrossRefGoogle Scholar
  102. 102.
    Strüder, L., Epp, S., Rolles, D., Hartmann, R., Holl, P., Lutz, G., et al. (2010). Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 614(3), 483–496.  https://doi.org/10.1016/j.nima.2009.12.053.CrossRefGoogle Scholar
  103. 103.
    Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., et al. (2015). Native structure of photosystem II at 1.95 a resolution viewed by femtosecond X-ray pulses. Nature, 517(7532), 99–103.  https://doi.org/10.1038/nature13991.CrossRefGoogle Scholar
  104. 104.
    Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., et al. (2017). Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature, 543(7643), 131–135.  https://doi.org/10.1038/nature21400.CrossRefGoogle Scholar
  105. 105.
    Sugahara, M., Mizohata, E., Nango, E., Suzuki, M., Tanaka, T., Masuda, T., & Iwata, S. (2015). Grease matrix as a versatile carrier of proteins for serial crystallography. Natural Methods, 12(1), 61–63.  https://doi.org/10.1038/nmeth.3172 http://www.nature.com/nmeth/journal/v12/n1/abs/nmeth.3172.html#supplementary-information.CrossRefGoogle Scholar
  106. 106.
    Sugahara, M., Nakane, T., Masuda, T., Suzuki, M., Inoue, S., Song, C., et al. (2017). Hydroxyethyl cellulose matrix applied to serial crystallography. Scientific Reports, 7, 703.  https://doi.org/10.1038/s41598-017-00761-0.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.  https://doi.org/10.1126/science.1259357.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Thibault, P., Elser, V., Jacobsen, C., Shapiro, D., & Sayre, D. (2006). Reconstruction of a yeast cell from X-ray diffraction data. Acta Crystallogr. Sect. A, 62(4), 248–261.  https://doi.org/10.1107/S0108767306016515.CrossRefGoogle Scholar
  109. 109.
    Tono, K., Nango, E., Sugahara, M., Song, C., Park, J., Tanaka, T., et al. (2015). Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): Application to serial protein crystallography using an X-ray free-electron laser. Journal of Synchrotron Radiation, 22(3), 532–537.  https://doi.org/10.1107/S1600577515004464.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Van Benschoten, A. H., Liu, L., Gonzalez, A., Brewster, A. S., Sauter, N. K., Fraser, J. S., & Wall, M. E. (2016). Measuring and modeling diffuse scattering in protein X-ray crystallography. Proceedings of the National Academy of Sciences, 113(15), 4069–4074.  https://doi.org/10.1073/pnas.1524048113.CrossRefGoogle Scholar
  111. 111.
    Wall, M. E., Ealick, S. E., & Gruner, S. M. (1997). Three-dimensional diffuse x-ray scattering from crystals of staphylococcal nuclease. Proceedings of the National Academy of Sciences, 94(12), 6180–6184. CrossRefGoogle Scholar
  112. 112.
    Wampler, R. D., Kissick, D. J., Dehen, C. J., Gualtieri, E. J., Grey, J. L., Wang, H.-F., et al. (2008). Selective detection of protein crystals by second harmonic microscopy. Journal of the American Chemical Society, 130(43), 14076–14077.  https://doi.org/10.1021/ja805983b.CrossRefPubMedGoogle Scholar
  113. 113.
    Wanapun, D., Kestur, U. S., Kissick, D. J., Simpson, G. J., & Taylor, L. S. (2010). Selective detection and Quantitation of organic molecule crystallization by second harmonic generation microscopy. Analytical Chemistry, 82(13), 5425–5432.  https://doi.org/10.1021/ac100564f.CrossRefPubMedGoogle Scholar
  114. 114.
    Weierstall, U., Doak, R. B., Spence, J. C. H., Starodub, D., Shapiro, D., Kennedy, P., et al. (2008). Droplet streams for serial crystallography of proteins. Experiments in Fluids, 44(5), 675–689.  https://doi.org/10.1007/s00348-007-0426-8.CrossRefGoogle Scholar
  115. 115.
    Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309–3309.  https://doi.org/10.1038/ncomms4309.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Welberry, T. R., Heerdegen, A. P., Goldstone, D. C., & Taylor, I. A. (2011). Diffuse scattering resulting from macromolecular frustration. Acta Crystallographica Section B, 67(6), 516–524.  https://doi.org/10.1107/S0108768111037542.CrossRefGoogle Scholar
  117. 117.
    White, T. A. (2014). Post-refinement method for snapshot serial crystallography. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1647).  https://doi.org/10.1098/rstb.2013.0330.CrossRefGoogle Scholar
  118. 118.
    White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., & Chapman, H. N. (2012). CrystFEL: A software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45(2), 335–341.  https://doi.org/10.1107/s0021889812002312.CrossRefGoogle Scholar
  119. 119.
    Woolfson, M. M. (1997). An introduction to X-ray crystallography (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  120. 120.
    Xiong, G., Moutanabbir, O., Reiche, M., Harder, R., & Robinson, I. (2014). Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures. Advanced Materials, 26(46), 7747–7763.  https://doi.org/10.1002/adma.201304511.CrossRefPubMedGoogle Scholar
  121. 121.
    Yamashita, K., Kuwabara, N., Nakane, T., Murai, T., Mizohata, E., Sugahara, M., et al. (2017). Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography. IUCrJ, 4(5), 639–647.  https://doi.org/10.1107/S2052252517008557.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.  https://doi.org/10.1038/srep14017.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Yoon, C. H., DeMirci, H., Sierra, R. G., Dao, E. H., Ahmadi, R., Aksit, F., et al. (2017). Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin. Scientific Data, 4, 170055.  https://doi.org/10.1038/sdata.2017.55.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Young, I. D., Ibrahim, M., Chatterjee, R., Gul, S., Fuller, F. D., Koroidov, S., & Yano, J. (2016). Structure of photosystem II and substrate binding at room temperature. Nature, 540(7633), 453–457.  https://doi.org/10.1038/nature20161 http://www.nature.com/nature/journal/v540/n7633/abs/nature20161.html#supplementary-information.CrossRefGoogle Scholar
  125. 125.
    Young, L., Kanter, E. P., Krässig, B., Li, Y., March, A. M., Pratt, S. T., et al. (2010). Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466, 56.  https://doi.org/10.1038/nature09177.CrossRefPubMedGoogle Scholar
  126. 126.
    Zeldin, O. B., Brewster, A. S., Hattne, J., Uervirojnangkoorn, M., Lyubimov, A. Y., Zhou, Q., & Brunger, A. T. (2015). Data exploration toolkit for serial diffraction experiments. Acta Crystallographica Section D, 71(2), 352–356.  https://doi.org/10.1107/S1399004714025875.CrossRefGoogle Scholar
  127. 127.
    Zhang, H., Han, G. W., Batyuk, A., Ishchenko, A., White, K. L., Patel, N., & Cherezov, V. (2017a). Structural basis for selectivity and diversity in angiotensin II receptors. Nature., advance online publication, 544(7650), 327–332.  https://doi.org/10.1038/nature22035 http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature22035.html#supplementary-information. CrossRefGoogle Scholar
  128. 128.
    Zhang, X., Zhao, F., Wu, Y., Yang, J., Han, G. W., Zhao, S., & Xu, F. (2017b). Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nature Communications, 8, 15383.  https://doi.org/10.1038/ncomms15383 https://www.nature.com/articles/ncomms15383#supplementary-information.CrossRefGoogle Scholar
  129. 129.
    Zhu, D., Feng, Y., Stoupin, S., Terentyev, S. A., Lemke, H. T., Fritz, D. M., et al. (2014). Performance of a beam-multiplexing diamond crystal monochromator at the Linac coherent light source. Review of Scientific Instruments, 85(6), 063106.  https://doi.org/10.1063/1.4880724.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.Biosciences DivisionSLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.School of Molecular SciencesArizona State UniversityTempeUSA
  4. 4.Biodesign Center for Applied Structural Discovery, the Biodesign InstituteArizona State UniversityTempeUSA

Personalised recommendations