Advertisement

Single Molecule Imaging Using X-ray Free Electron Lasers

  • Andrew Aquila
  • Anton BartyEmail author
Chapter

Abstract

The potential to image single molecules in action with a resolution sufficiently high to reveal atomic information at room temperature without the need for crystallization is one of the most exciting applications of X-ray free electron lasers. Significant progress has been made towards this goal over the past years. Here we discuss the current status and describe the steps still required to realize atomic resolution X-ray single particle imaging.

References

  1. 1.
    Ayvazyan, V., Baboi, N., Bähr, J., Balandin, V., Beutner, B., Brandt, A., et al. (2005). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 37(2), 297–303.CrossRefGoogle Scholar
  2. 2.
    Allaria, E., Badano, L., Bassanese, S., Capotondi, F., Castronovo, D., Cinquegrana, P., et al. (2015). The FERMI free-electron lasers. Journal of Synchrotron Radiation, 22, 485–491.PubMedCrossRefGoogle Scholar
  3. 3.
    Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4(9), 641–647.CrossRefGoogle Scholar
  4. 4.
    Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T., et al. (2012). A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photonics, 6(8), 540–544.CrossRefGoogle Scholar
  5. 5.
    Altarelli, M. (2011). The European X-ray free-electron laser facility in Hamburg. Nuclear Instruments and Methods in Physics Research B, 269, 2845.CrossRefGoogle Scholar
  6. 6.
    Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRefGoogle Scholar
  7. 7.
    Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Barends, T. R. M., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.CrossRefGoogle Scholar
  11. 11.
    Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130318.CrossRefGoogle Scholar
  13. 13.
    Pande, K., Hutchison, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Spence, J. (2008). X-ray imaging - ultrafast diffract-and-destroy movies. Nature Photonics, 2(7), 390–391.CrossRefGoogle Scholar
  15. 15.
    Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.CrossRefGoogle Scholar
  16. 16.
    Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541(7636), 242–246.CrossRefGoogle Scholar
  17. 17.
    Arnlund, D., Johansson, L. C., Wickstrand, C., Barty, A., Williams, G. J., Malmerberg, E., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cammarata, M., Levantino, M., Schotte, F., Anfinrud, P. A., Ewald, F., Choi, J., et al. (2008). Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nature Methods, 5(10), 881–886.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Alonso-Mori, R., Kern, J., Gildea, R. J., Sokaras, D., Weng, T. C., Lassalle-Kaiser, B., et al. (2012). Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences, 109(47), 19103–19107.CrossRefGoogle Scholar
  20. 20.
    Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., et al. (2013). Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340(6131), 491–495. PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ayyer, K., Geloni, G., Kocharyan, V., Saldin, E., Serkez, S., Yefanov, O., et al. (2015). Perspectives for imaging single protein molecules with the present design of the European XFEL. Structural Dynamics, 2(4), 041702–041711.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    SOLEM, J. C. (1986). Imaging biological specimens with high-intensity soft X-rays. Journal of the Optical Society of America B: Optical Physics, 3(11), 1551–1565.CrossRefGoogle Scholar
  24. 24.
    Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2(12), 839–843.CrossRefGoogle Scholar
  25. 25.
    Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Galayda, J. N. (2003). LCLS the first experiments. SLAC-R-611. http://www-public.slac.stanford.edu/scidoc/index.asp
  28. 28.
    Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H., & Attwood, D. T. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046), 1210–1213.PubMedCrossRefGoogle Scholar
  29. 29.
    Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14), 140101.CrossRefGoogle Scholar
  30. 30.
    Miao, J., Charalambous, P., Kirz, J., & Sayre, D. (1999). Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400(6742), 342–344.CrossRefGoogle Scholar
  31. 31.
    Barty, A., Marchesini, S., Chapman, H. N., Cui, C., Howells, M. R., Shapiro, D. A., et al. (2008). Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms. Physical Review Letters, 101(5), 055501.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P., Cui, C., et al. (2006). High-resolution ab initio three-dimensional x-ray diffraction microscopy. Journal of the Optical Society of America. A, 23(5), 1179–1200.CrossRefGoogle Scholar
  33. 33.
    Boutet, S., Bogan, M. J., Barty, A., Frank, M., Benner, W. H., Marchesini, S., et al. (2008). Ultrafast soft X-ray scattering and reference-enhanced diffractive imaging of weakly scattering nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 166-167, 65–73.CrossRefGoogle Scholar
  34. 34.
    Seibert, M. M., Boutet, S., Svenda, M., Ekeberg, T., Maia, F. R. N. C., Bogan, M. J., et al. (2010). Femtosecond diffractive imaging of biological cells. Journal of Physics B, 43(19), 194015.CrossRefGoogle Scholar
  35. 35.
    Seibert, M. M., Ekeberg, T., Maia, F. R. N. C., Svenda, M., Andreasson, J., Jonsson, O., et al. (2011). Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332), 78–81.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ekeberg, T., Svenda, M., Abergel, C., Maia, F. R. N. C., Seltzer, V., Claverie, J.-M., et al. (2015). Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Physical Review Letters, 114(9), 098102.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hantke, M. F., Hasse, D., Maia, F. R. N. C., Ekeberg, T., John, K., Svenda, M., et al. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics, 8(12), 943–949.CrossRefGoogle Scholar
  38. 38.
    Reddy, H. K. N., Yoon, C. H., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2017). Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac Coherent Light Source. Scientific Data, 4, 170079.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2013). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 1–7.Google Scholar
  40. 40.
    van der Schot, G., Svenda, M., Maia, F. R. N. C., Hantke, M., DePonte, D. P., Seibert, M. M., et al. (2015). Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications, 6, 5704.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Loh, N. D., Hampton, C. Y., Martin, A. V., Starodub, D., Sierra, R. G., Barty, A., et al. (2012). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404), 513–517.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., de Ponte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701–041713.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Daurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N. C., Mühlig, K., Seibert, M. M., et al. (2017). Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ, 4(3), 251–262.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Munke, A., Andreasson, J., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2016). Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data, 3, 160064.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Strüder, L., Epp, S., Rolles, D., Hartmann, R., Holl, P., Lutz, G., et al. (2010). Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuclear Instruments and Methods in Physics Research Section A, 614, 483–496.CrossRefGoogle Scholar
  46. 46.
    Liang, M., Williams, G. J., Messerschmidt, M., Seibert, M. M., Montanez, P. A., Hayes, M., et al. (2015). The coherent X-ray imaging instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 514–519.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Young, L., Kanter, E. P., Krässig, B., Li, Y., March, A. M., Pratt, S. T., et al. (2010). Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466(7302), 56–61.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Nagler, B., Aquila, A., Boutet, S., Galtier, E. C., Hashim, A., Hunter, M. S., et al. (2017). Focal spot and wavefront Sensing of an X-ray free electron laser using Ronchi shearing interferometry. Scientific Reports, 7(1), 13698.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Barty, A., Soufli, R., McCarville, T., Baker, S. L., Pivovaroff, M. J., Stefan, P., et al. (2009). Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser. Optics Express, 17(18), 15508–15519.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bean, R. J., Aquila, A., Samoylova, L., & Mancuso, A. P. (2016). Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL. Journal of Optics, 18(7), 074011.CrossRefGoogle Scholar
  51. 51.
    Loh, N.-T. D., & Elser, V. (2009). Reconstruction algorithm for single-particle diffraction imaging experiments. Physical Review E, 80(2), 026705.CrossRefGoogle Scholar
  52. 52.
    Ayyer, K., Philipp, H. T., Tate, M. W., Wierman, J. L., Elser, V., & Gruner, S. M. (2015). Determination of crystallographic intensities from sparse data. IUCrJ, 2(1), 29–34.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Giannakis, D., Schwander, P., & Ourmazd, A. (2012). The symmetries of image formation by scattering. I. Theoretical framework. Optics Express, 20(12), 12799–12826.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tegze, M., & Bortel, G. (2012). Atomic structure of a single large biomolecule from diffraction patterns of random orientations. Journal of Structural Biology, 179, 41–45.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Donatelli, J. J., Zwart, P. H., & Sethian, J. A. (2015). Iterative phasing for fluctuation X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10286–10291.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kirian, R. A., Schmidt, K. E., Wang, X., Doak, R. B., & Spence, J. C. H. (2011). Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering. Physical Review E, 84(1), 011921.CrossRefGoogle Scholar
  57. 57.
    Saldin, D. K., Poon, H. C., Shneerson, V. L., Howells, M., Chapman, H. N., Kirian, R. A., et al. (2010). Beyond small-angle x-ray scattering: Exploiting angular correlations. Physical Review B, 81(17), 174105.CrossRefGoogle Scholar
  58. 58.
    Philipp, H. T., Ayyer, K., Tate, M. W., Elser, V., & Gruner, S. M. (2012). Solving structure with sparse, randomly-oriented X-ray data. Optics Express, 20(12), 13129–13137.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Loh, N. D. (2012). Effects of extraneous noise in cryptotomography. Proceedings of SPIE, 8500, 85000K.CrossRefGoogle Scholar
  60. 60.
    Andreasson, J., Martin, A. V., Liang, M., Timneanu, N., Aquila, A., Wang, F., et al. (2014). Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Optics Express, 22(3), 2497–2510.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Denes, P. (2014). Two-dimensional imaging detectors for structural biology with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130334.CrossRefGoogle Scholar
  62. 62.
    Hatsui, T., & Graafsma, H. (2015). X-ray imaging detectors for synchrotron and XFEL sources. IUCrJ, M2, 371–383.CrossRefGoogle Scholar
  63. 63.
    Becker, J., Greiffenberg, D., Trunk, U., Shi, X., Dinapoli, R., Mozzanica, A., et al. (2012). The single photon sensitivity of the adaptive gain integrating pixel detector. Nuclear Instruments and Methods in Physics Research A, 694, 82–90.CrossRefGoogle Scholar
  64. 64.
    Wunderer, C. B., Marras, A., Bayer, M., Correa, J., Lange, S., Shevyakov, I., et al. (2014). Percival: An international collaboration to develop a MAPS-based soft X-ray imager. Synchrotron Radiation News, 27(4), 30–34.CrossRefGoogle Scholar
  65. 65.
    Blaj. G., Caragiulo, P., Carini, G., Dragone, A., Haller, G. (2015). Design and performance of the ePix camera systems.Google Scholar
  66. 66.
    Carini, G. A., Alonso-Mori, R., Blaj, G. (2016). ePix100 camera: Use and applications at LCLS. Available from https://www.researchgate.net/profile/Angelo_Dragone/publication/305685847_ePix100_camera_Use_and_applications_at_LCLS/links/57c6e09908aec24de042a16a.pdf
  67. 67.
    Mozzanica, A., Bergamaschi, A., Cartier, S., Dinapoli, R., Greiffenberg, D., Johnson, I., et al. (2014). Prototype characterization of the JUNGFRAU pixel detector for SwissFEL. Journal of Instrumentation, 9(5), C05010.CrossRefGoogle Scholar
  68. 68.
    Bogan, M. J., Boutet, S., Chapman, H. N., Marchesini, S., Barty, A., Benner, W. H., et al. (2010). Aerosol imaging with a soft X-ray free electron laser. Aerosol Science and Technology, 44(3), i–vi.CrossRefGoogle Scholar
  69. 69.
    Frank, M., Frank, M., Carlson, D. B., Carlson, D. B., Hunter, M. S., Hunter, M. S., et al. (2014). Femtosecond X-ray diffraction from two-dimensional protein crystals. IUCrJ, 1(Pt 2), 95–100.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pedrini, B., Tsai, C.-J., Capitani, G., Padeste, C., Hunter, M. S., Zatsepin, N. A., et al. (2014). 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130500.CrossRefGoogle Scholar
  71. 71.
    Yuk, J. M., Park, J., Ercius, P., Kim, K., Hellebusch, D. J., Crommie, M. F., et al. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077), 61–64.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Seuring, C., Ayyer, K., Filippaki, E., Barthelmess, M., Longchamp, J.-N., Ringler, P., et al. (2018). Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nature Communications, 9, 1–10.  https://doi.org/10.1038/s41467-018-04116-9.
  73. 73.
    Hart, P., Boutet, S., Carini, G., Dubrovin, M., Duda, B., Fritz, D., et al. (2012). The CSPAD megapixel x-ray camera at LCLS. Proceedings of SPIE, 8504, 85040C.CrossRefGoogle Scholar
  74. 74.
    Ferguson, K. R., Bucher, M., Bozek, J. D., Carron, S., Castagna, J. C., Coffee, R., et al. (2015). The atomic, molecular and optical science instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 492–497.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hosseinizadeh, A., Mashayekhi, G., Copperman, J., Schwander, P., Dashti, A., Sepehr, R., et al. (2017). Conformational landscape of a virus by single-particle X-ray scattering. Nature Methods, 5(9), 4061–4881.Google Scholar
  76. 76.
    Kurta, R. P., Donatelli, J. J., Yoon, C. H., Berntsen, P., Bielecki, J., Daurer, B. J., et al. (2017). Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses. Physical Review Letters, 119(15), 158102.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Maia, F. R. N. C. (2012). The coherent X-ray imaging data bank. Nature Methods, 9(9), 854–855.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Miao, J., & Sayre, D. (2000). On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallographica. Section A, 56, 596–605.Google Scholar
  79. 79.
    Loh, N. D. (2014). A minimal view of single-particle imaging with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130328–20130328.CrossRefGoogle Scholar
  80. 80.
    Bobkov, S. A., Teslyuk, A. B., Kurta, R. P., Gorobtsov, O. Y., Yefanov, O. M., Ilyin, V. A., et al. (2015). Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers. Journal of Synchrotron Radiation, 22(6), 1345–1352.PubMedCrossRefGoogle Scholar
  81. 81.
    Hosseinizadeh, A., Schwander, P., Dashti, A., Fung, R., D'Souza, R. M., & Ourmazd, A. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130326–20130326.CrossRefGoogle Scholar
  82. 82.
    Yoon, C. H., Schwander, P., Abergel, C., Andersson, I., Andreasson, J., Aquila, A., et al. (2011). Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. Optics Express, 19(17), 16542–16549.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Park, H. J., Loh, N. D., Sierra, R. G., Hampton, C. Y., Starodub, D., Martin, A. V., et al. (2013). Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers. Optics Express, 21(23), 28729–28742.PubMedCrossRefGoogle Scholar
  84. 84.
    Shneerson, V. L., Ourmazd, A., & Saldin, D. K. (2008). Crystallography without crystals. I. The common-line method for assembling a three-dimensional diffraction volume from single-particle scattering. Acta Crystallographica, Section A: Foundations of Crystallography, 64(2), 303–315.CrossRefGoogle Scholar
  85. 85.
    Ayyer, K., Lan, T. Y., Elser, V., & Loh, N. D. (2016). Dragonfly: An implementation of the expand-maximize-compress algorithm for single-particle imaging. Journal of Applied Crystallography, 49, 1320–1335.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Starodub, D., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bostedt, C., et al. (2012). Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nature Communications, 3, 1276.PubMedCrossRefGoogle Scholar
  87. 87.
    Barty, A., Küpper, J., & Chapman, H. N. (2013). Molecular imaging using X-ray free-electron lasers. Annual Review of Physical Chemistry, 64, 415–435.CrossRefGoogle Scholar
  88. 88.
    Chapman, H. N., & Nugent, K. A. (2010). Coherent lensless X-ray imaging. Nature Photonics, 4(12), 833–839.CrossRefGoogle Scholar
  89. 89.
    Marchesini, S. (2007). Phase retrieval and saddle-point optimization. Journal of the Optical Society of America. A, 24(10), 3289–3296.CrossRefGoogle Scholar
  90. 90.
    Shechtman, Y., Eldar, Y. C., Cohen, O., & Segev, M. (2013). Efficient coherent diffractive imaging for sparsely varying objects. Optics Express, 21(5), 6327–6338.PubMedCrossRefGoogle Scholar
  91. 91.
    Jiang, H., Song, C., Chen, C.-C., Xu, R., Raines, K. S., Fahimian, B. P., et al. (2010). Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 107(25), 11234–11239.CrossRefGoogle Scholar
  92. 92.
    Robinson, I. (2008). Coherent diffraction - giant molecules or tiny crystals? Nature Materials, 7(4), 275–276.PubMedCrossRefGoogle Scholar
  93. 93.
    Martin, A. V., Loh, N. D., Hampton, C. Y., Sierra, R. G., Wang, F., Aquila, A., et al. (2012). Femtosecond dark-field imaging with an X-ray free electron laser. Optics Express, 20(12), 13501–13512.PubMedCrossRefGoogle Scholar
  94. 94.
    Donatelli, J. J., Sethian, J. A., & Zwart, P. H. (2017). Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase. Proceedings of the National Academy of Sciences, 114(28), 7222–7227.CrossRefGoogle Scholar
  95. 95.
    Kierspel, T., Wiese, J., Mullins, T., Robinson, J., Aquila, A., Barty, A., et al. (2015). Strongly aligned gas-phase molecules at free-electron lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(20), 1–7.CrossRefGoogle Scholar
  96. 96.
    Starodub, D., Doak, R. B., Schmidt, K., Weierstall, U., Wu, J. S., Spence, J. C. H., et al. (2005). Damped and thermal motion of laser-aligned hydrated macromolecule beams for diffraction. The Journal of Chemical Physics, 123(24), 244304. PubMedCrossRefGoogle Scholar
  97. 97.
    Stern, S., Holmegaard, L., Filsinger, F., Rouzee, A., Rudenko, A., Johnsson, P., et al. (2014). Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers. The Royal Society of Chemistry, 171, 393–418.Google Scholar
  98. 98.
    Pedrini, B., Menzel, A., Guizar-Sicairos, M., Guzenko, V. A., Gorelick, S., David, C., et al. (2013). Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations. Nature Communications, 4, 1647.PubMedCrossRefGoogle Scholar
  99. 99.
    Gipson, B., Masiel, D., Browning, N., Spence, J., Mitsuoka, K., & Stahlberg, H. (2011). Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals. Physical Review E, 84(1), 011916.CrossRefGoogle Scholar
  100. 100.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sayre, D. (1952). Some implications of a theorem due to Shannon. Acta Crystallographica, 5(6), 843–843.CrossRefGoogle Scholar
  102. 102.
    Kirian, R. A., Bean, R. J., Beyerlein, K. R., Yefanov, O. M., White, T. A., Barty, A., et al. (2014). Phasing coherently illuminated nanocrystals bounded by partial unit cells. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130331–20130331.CrossRefGoogle Scholar
  103. 103.
    Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T., et al. (2011). Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19(4), 2866–2873.PubMedCrossRefGoogle Scholar
  104. 104.
    Kirian, R. A., Bean, R. J., Beyerlein, K. R., Barthelmess, M., Yoon, C. H., Wang, F., et al. (2015). Direct phasing of finite crystals illuminated with a free-electron laser. Physical Review X, 5(1), 011015.CrossRefGoogle Scholar
  105. 105.
    Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530(7589), 202–206.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Eisebitt, S., Lüning, J., Schlotter, W. F., Lorgen, M., Hellwig, O., Eberhardt, W., et al. (2004). Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature, 432(7019), 885–888.PubMedCrossRefGoogle Scholar
  107. 107.
    McNulty, I., Kirz, J., Jacobsen, C., Anderson, E. H., Howells, M. R., & KERN, D. P. (1992). High-resolution imaging by Fourier-transform X-ray holography. Science, 256(5059), 1009–1012.PubMedCrossRefGoogle Scholar
  108. 108.
    Solem, J. C., & Baldwin, G. C. (1982). Micro-holography of living organisms. Science, 218(4569), 229–235.PubMedCrossRefGoogle Scholar
  109. 109.
    Wu, B., Wang, T., Graves, C. E., Zhu, D., Schlotter, W. F., Turner, J. J., et al. (2016). Elimination of X-ray diffraction through stimulated X-ray transmission. Physical Review Letters, 117(2), 027401.PubMedCrossRefGoogle Scholar
  110. 110.
    Schlotter, W. F., Rick, R., Chen, K., Scherz, A., Stöhr, J., Lüning, J., et al. (2006). Multiple reference Fourier transform holography with soft x rays. Applied Physics Letters, 89(16), 163112.CrossRefGoogle Scholar
  111. 111.
    Marchesini, S., Boutet, S., Sakdinawat, A. E., Bogan, M. J., Bajt, S., Barty, A., et al. (2008). Massively parallel X-ray holography. Nature Photonics, 2(9), 560–563.CrossRefGoogle Scholar
  112. 112.
    Martin, A. V. (2014). The correlation of single-particle diffraction patterns as a continuous function of particle orientation. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130329.CrossRefGoogle Scholar
  113. 113.
    Gorkhover, T., Ulmer, A., & Ferguson, K. (2017). Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nature Photonics, 12, 150–153.CrossRefGoogle Scholar
  114. 114.
    Bai, X.-C., McMullan, G., & Scheres, S. H. W. (2015). How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 40(1), 49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Cheng, Y. (2015). Single-particle cryo-EM at crystallographic resolution. Cell, 161(3), 450–457.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Henderson, R. (2015). Overview and future of single particle electron cryomicroscopy. Archives of Biochemistry and Biophysics, 581, 19–24.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Danev, R., & Baumeister, W. (2016). Cryo-EM single particle analysis with the Volta phase plate. eLife, 5, e13046.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Glaeser, R. M. (2013). Invited Review Article: Methods for imaging weak-phase objects in electron microscopy. The Review of Scientific Instruments, 84(11), 111101–111117.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Garman, E. F. (2010). Radiation damage in macromolecular crystallography: What is it and why should we care? Acta Crystallographica. Section D, Biological Crystallography, 66(4), 339–351.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Caleman, C., Ortiz, C., Marklund, E., Bultmark, F., Gabrysch, M., Parak, F. G., et al. (2009). Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhysics Letters, 85(1), 18005.CrossRefGoogle Scholar
  121. 121.
    Nagler, B., Zastrau, U., Fäustlin, R. R., Vinko, S. M., Whitcher, T., Nelson, A. J., et al. (2009). Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Physics, 5(8), 1–4.Google Scholar
  122. 122.
    Armstrong, M. R., Boyden, K., Browning, N. D., Campbell, G. H., Colvin, J. D., DeHope, W. J., et al. (2007). Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy, 107(4-5), 356–367.PubMedCrossRefGoogle Scholar
  123. 123.
    LaGrange, T., Armstrong, M. R., Boyden, K., Brown, C. G., Campbell, G. H., Colvin, J. D., et al. (2006). Single-shot dynamic transmission electron microscopy. Applied Physics Letters, 89(4), 044105.CrossRefGoogle Scholar
  124. 124.
    Altarelli, M., & Mancuso, A. P. (2014). Structural biology at the European X-ray free-electron laser facility. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130311–20130311.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.Centre for Free-Electron Laser Science, DESYHamburgGermany

Personalised recommendations