Advertisement

Time-Resolved Serial Femtosecond Crystallography, Towards Molecular Movies of Biomolecules in Action

  • Jacques-Philippe Colletier
  • Giorgio Schirò
  • Martin Weik
Chapter

Abstract

Biological macromolecules, such as proteins, nucleic acids, and complexes thereof, are characterized by specific structural and dynamic features that are the basis of their respective biological activity, and define their dynamic personalities [29]. Understanding macromolecular activity thus requires studying structural changes over time and on various time-scales, such as equilibrium fluctuations and conformational changes orchestrating enzyme catalysis or enabling signal transduction. The first step in human vision, for instance, is the sub-picosecond time-scale photoisomerization of the retinal pigment in rhodopsin [73], which within microseconds leads to the conformational changes required for activation of transducin, the regulatory protein that initiates the signaling cascade beyond the macromolecular level.

References

  1. 1.
    Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716.  https://doi.org/10.1364/OE.20.002706.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barends, T. R., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.  https://doi.org/10.1126/science.aac5492. CrossRefPubMedGoogle Scholar
  3. 3.
    Baxter, R. H., Ponomarenko, N., Srajer, V., Pahl, R., Moffat, K., & Norris, J. R. (2004). Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 5982–5987.  https://doi.org/10.1073/pnas.0306840101.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Beyerlein, K. R., Dierksmeyer, D., Mariani, V., Kuhn, M., Sarrou, I., Ottaviano, A., et al. (2017). Mix-and-diffuse serial synchrotron crystallography. IUCrJ, 4(Pt 6), 769–777.  https://doi.org/10.1107/S2052252517013124.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Botha, S., Nass, K., Barends, T. R., Kabsch, W., Latz, B., Dworkowski, F., et al. (2015). Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta crystallographica Section D, Biological crystallography, 71(Pt 2), 387–397.  https://doi.org/10.1107/S1399004714026327.CrossRefPubMedGoogle Scholar
  6. 6.
    Bourgeois, D., Vallone, B., Arcovito, A., Sciara, G., Schotte, F., Anfinrud, P. A., et al. (2006). Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4924–4929.  https://doi.org/10.1073/pnas.0508880103.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bourgeois, D., Vallone, B., Schotte, F., Arcovito, A., Miele, A. E., Sciara, G., et al. (2003). Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8704–8709.  https://doi.org/10.1073/pnas.1430900100.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bourgeois, D., & Weik, M. (2009). Kinetic protein crystallography: A tool to watch proteins in action. Crystallography Reviews, 15(2), 87–118.CrossRefGoogle Scholar
  9. 9.
    Broichhagen, J., Frank, J. A., & Trauner, D. (2015). A roadmap to success in Photopharmacology. Accounts of Chemical Research, 48(7), 1947–1960.  https://doi.org/10.1021/acs.accounts.5b00129.CrossRefPubMedGoogle Scholar
  10. 10.
    Cammarata, M., Levantino, M., Schotte, F., Anfinrud, P. A., Ewald, F., Choi, J., et al. (2008). Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nature Methods, 5(10), 881–886.CrossRefGoogle Scholar
  11. 11.
    Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77.CrossRefGoogle Scholar
  12. 12.
    Colletier, J. P., Bourgeois, D., Sanson, B., Fournier, D., Sussman, J. L., Silman, I., et al. (2008). Shoot-and-trap: Use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11742–11747.CrossRefGoogle Scholar
  13. 13.
    Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.  https://doi.org/10.1107/S2052252515009811.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Coquelle, N., Brewster, A. S., Kapp, U., Shilova, A., Weinhausen, B., Burghammer, M., et al. (2015). Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallographica Section D, 71(5), 1184–1196.  https://doi.org/10.1107/S1399004715004514.CrossRefGoogle Scholar
  15. 15.
    Coquelle, N., Sliwa, M., Woodhouse, J., Schirò, G., Adam, V., Aquila, A., et al. (2018). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31–37.  https://doi.org/10.1038/nchem.2853.CrossRefPubMedGoogle Scholar
  16. 16.
    Danailov, M. B., Bencivenga, F., Capotondi, F., Casolari, F., Cinquegrana, P., Demidovich, A., et al. (2014). Towards jitter-free pump-probe measurements at seeded free electron laser facilities. Optics Express, 22(11), 12869–12879.  https://doi.org/10.1364/oe.22.012869.CrossRefPubMedGoogle Scholar
  17. 17.
    Duan, C., Adam, V., Byrdin, M., Ridard, J., Kieffer-Jaquinod, S., Morlot, C., et al. (2013). Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein. Journal of the American Chemical Society, 135(42), 15841–15850.  https://doi.org/10.1021/ja406860e.CrossRefPubMedGoogle Scholar
  18. 18.
    Efremov, R., Gordeliy, V. I., Heberle, J., & Büldt, G. (2006). Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. Biophysical Journal, 91(4), 1441–1451.  https://doi.org/10.1529/biophysj.106.083345.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fermi, G., Perutz, M. F., Dickinson, L. C., & Chien, J. C. W. (1982). Structure of human deoxy cobalt haemoglobin. Journal of Molecular Biology, 155(4), 495–505.  https://doi.org/10.1016/0022-2836(82)90483-1.CrossRefPubMedGoogle Scholar
  20. 20.
    Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D., Lebrette, H., et al. (2017). Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 14(4), 443–449.  https://doi.org/10.1038/nmeth.4195.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Garman, E. F., & Weik, M. (2017). Radiation damage in macromolecular crystallography. Methods in Molecular Biology, 1607, 467–489.  https://doi.org/10.1007/978-1-4939-7000-1_20.CrossRefPubMedGoogle Scholar
  22. 22.
    Gati, C., Bourenkov, G., Klinge, M., Rehders, D., Stellato, F., Oberthur, D., et al. (2014). Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ, 1(Pt 2), 87–94.  https://doi.org/10.1107/S2052252513033939.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Genick, U. K., Borgstahl, G. E., Ng, K., Ren, Z., Pradervand, C., Burke, P. M., et al. (1997). Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science, 275(5305), 1471–1475.CrossRefGoogle Scholar
  24. 24.
    Gerwert, K., Hess, B., Michel, H., & Buchanan, S. (1988). FTIR studies on crystals of photosynthetic reaction centers. FEBS Letters, 232(2), 303–307.  https://doi.org/10.1016/0014-5793(88)80758-0.CrossRefGoogle Scholar
  25. 25.
    Glownia, J. M., Cryan, J., Andreasson, J., Belkacem, A., Berrah, N., Blaga, C. I., et al. (2010). Time-resolved pump-probe experiments at the LCLS. Optics Express, 18(17), 17620–17630.  https://doi.org/10.1364/oe.18.017620.CrossRefPubMedGoogle Scholar
  26. 26.
    Grotjohann, T., Testa, I., Reuss, M., Brakemann, T., Eggeling, C., Hell, S. W., et al. (2012). rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLife, 1, e00248.  https://doi.org/10.7554/eLife.00248.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Harmand, M., Coffee, R., Bionta, M. R., Chollet, M., French, D., Zhu, D., et al. (2013). Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nature Photonics, 7, 215.  https://doi.org/10.1038/nphoton.2013.11.CrossRefGoogle Scholar
  28. 28.
    Hekstra, D. R., White, K. I., Socolich, M. A., Henning, R. W., Srajer, V., & Ranganathan, R. (2016). Electric-field-stimulated protein mechanics. Nature, 540(7633), 400–405.  https://doi.org/10.1038/nature20571.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450(7172), 964–972.CrossRefGoogle Scholar
  30. 30.
    Heymann, M., Opthalage, A., Wierman, J. L., Akella, S., Szebenyi, D. M., Gruner, S. M., et al. (2014). Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ, 1(Pt 5), 349–360.  https://doi.org/10.1107/S2052252514016960.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hirata, K., Shinzawa-Itoh, K., Yano, N., Takemura, S., Kato, K., Hatanaka, M., et al. (2014). Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nature Methods, 11(7), 734–736.  https://doi.org/10.1038/nmeth.2962.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang, C. Y., Olieric, V., Ma, P., Panepucci, E., Diederichs, K., Wang, M., et al. (2015). In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta crystallographica Section D, Biological crystallography, 71(Pt 6), 1238–1256.  https://doi.org/10.1107/S1399004715005210.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hutchison, C. D. M., Kaucikas, M., Tenboer, J., Kupitz, C., Moffat, K., Schmidt, M., et al. (2016). Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein. Chemical Physics Letters, 654, 63–71.  https://doi.org/10.1016/j.cplett.2016.04.087.CrossRefGoogle Scholar
  34. 34.
    Ihee, H., Rajagopal, S., Srajer, V., Pahl, R., Anderson, S., Schmidt, M., et al. (2005). Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7145–7150 Epub 2005 May 7143.CrossRefGoogle Scholar
  35. 35.
    Jaeger, K., Dworkowski, F., Nogly, P., Milne, C., Wang, M., & Standfuss, J. (2016). Serial millisecond crystallography of membrane proteins. Advances in Experimental Medicine and Biology, 922, 137–149.  https://doi.org/10.1007/978-3-319-35072-1_10.CrossRefPubMedGoogle Scholar
  36. 36.
    Jung, Y. O., Lee, J. H., Kim, J., Schmidt, M., Moffat, K., Srajer, V., et al. (2013). Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nature Chemistry, 5(3), 212–220.  https://doi.org/10.1038/nchem.1565.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., et al. (2013). Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340(6131), 491–495.  https://doi.org/10.1126/science.1234273.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., et al. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371.  https://doi.org/10.1038/ncomms5371.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Knapp, J. E., Pahl, R., Srajer, V., & Royer Jr., W. E. (2006). Allosteric action in real time: Time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7649–7654.  https://doi.org/10.1073/pnas.0509411103.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kok, B., Forbush, B., & McGloin, M. (1970). Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochemistry and Photobiology, 11(6), 457–475.CrossRefGoogle Scholar
  41. 41.
    Kort, R., Ravelli, R. B., Schotte, F., Bourgeois, D., Crielaard, W., Hellingwerf, K. J., et al. (2003). Characterization of photocycle intermediates in crystalline photoactive yellow protein. Photochemistry and Photobiology, 78(2), 131–137.  https://doi.org/10.1562/0031-8655(2003)0780131copiic2.0.co2.CrossRefPubMedGoogle Scholar
  42. 42.
    Kostov, K. S., & Moffat, K. (2011). Cluster analysis of time-dependent crystallographic data: Direct identification of time-independent structural intermediates. Biophysical Journal, 100(2), 440–449.  https://doi.org/10.1016/j.bpj.2010.10.053.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kovacsova, G., Grunbein, M. L., Kloos, M., Barends, T. R. M., Schlesinger, R., Heberle, J., et al. (2017). Viscous hydrophilic injection matrices for serial crystallography. IUCrJ, 4(Pt 4), 400–410.  https://doi.org/10.1107/S2052252517005140.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kubelka, J. (2009). Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochemical & Photobiological Sciences, 8(4), 499–512.  https://doi.org/10.1039/b819929a.CrossRefGoogle Scholar
  45. 45.
    Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.  https://doi.org/10.1038/nature13453.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.  https://doi.org/10.1063/1.4972069.CrossRefPubMedGoogle Scholar
  47. 47.
    Levantino, M., Schiro, G., Lemke, H. T., Cottone, G., Glownia, J. M., Zhu, D., et al. (2015). Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nature Communications, 6, 6772.  https://doi.org/10.1038/ncomms7772.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lincoln, C. N., Fitzpatrick, A. E., & van Thor, J. J. (2012). Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Physical Chemistry Chemical Physics, 14(45), 15752–15764.  https://doi.org/10.1039/c2cp41718a.CrossRefPubMedGoogle Scholar
  49. 49.
    Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.  https://doi.org/10.1126/science.1244142.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Löhl, F., Arsov, V., Felber, M., Hacker, K., Jalmuzna, W., Lorbeer, B., et al. (2010). Electron bunch timing with femtosecond precision in a superconducting free-electron laser. Physical Review Letters, 104(14), 144801.CrossRefGoogle Scholar
  51. 51.
    Martin-Garcia, J. M., Conrad, C. E., Nelson, G., Stander, N., Zatsepin, N. A., Zook, J., et al. (2017). Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ, 4(Pt 4), 439–454.  https://doi.org/10.1107/S205225251700570X.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Meents, A., Wiedorn, M. O., Srajer, V., Henning, R., Sarrou, I., Bergtholdt, J., et al. (2017). Pink-beam serial crystallography. Nature Communications, 8(1), 1281.  https://doi.org/10.1038/s41467-017-01417-3.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Miller, R. J. D. (1994). Energetics and dynamics of deterministic protein motion. Accounts of Chemical Research, 27(5), 145–150.  https://doi.org/10.1021/ar00041a005.CrossRefGoogle Scholar
  54. 54.
    Moffat, K. (1989). Time-resolved macromolecular crystallography. Annual Review of Biophysics and Biophysical Chemistry, 18, 309–332.  https://doi.org/10.1146/annurev.bb.18.060189.001521.CrossRefPubMedGoogle Scholar
  55. 55.
    Mozzarelli, A., & Rossi, G. L. (1996). Protein function in the crystal. Annual Review of Biophysics and Biomolecular Structure, 25, 343–365.CrossRefGoogle Scholar
  56. 56.
    Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., et al. (2016). A three-dimensional movie of structural changes in bacteriorhodopsin. Science, 354(6319), 1552–1557.  https://doi.org/10.1126/science.aah3497.CrossRefPubMedGoogle Scholar
  57. 57.
    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.CrossRefGoogle Scholar
  58. 58.
    Ng, K., Getzoff, E. D., & Moffat, K. (1995). Optical studies of a bacterial photoreceptor protein, photoactive yellow protein, in single crystals. Biochemistry, 34(3), 879–890.  https://doi.org/10.1021/bi00003a022.CrossRefPubMedGoogle Scholar
  59. 59.
    Nogly, P., James, D., Wang, D., White, T. A., Zatsepin, N., Shilova, A., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2(Pt 2), 168–176.  https://doi.org/10.1107/S2052252514026487.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 12314.  https://doi.org/10.1038/ncomms12314.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Oghbaey, S., Sarracini, A., Ginn, H. M., Pare-Labrosse, O., Kuo, A., Marx, A., et al. (2016). Fixed target combined with spectral mapping: Approaching 100% hit rates for serial crystallography. Acta crystallographica Section D, Structural Biology, 72(Pt 8), 944–955.  https://doi.org/10.1107/S2059798316010834.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Owen, R. L., Axford, D., Sherrell, D. A., Kuo, A., Ernst, O. P., Schulz, E. C., et al. (2017). Low-dose fixed-target serial synchrotron crystallography. Acta Crystallographica Section D, 73(4), 373–378.  https://doi.org/10.1107/S2059798317002996.CrossRefGoogle Scholar
  63. 63.
    Pande, K., Hutchison, C. D., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.  https://doi.org/10.1126/science.aad5081.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rajagopal, S., Kostov, K. S., & Moffat, K. (2004). Analytical trapping: Extraction of time-independent structures from time-dependent crystallographic data. Journal of Structural Biology, 147(3), 211–222.  https://doi.org/10.1016/j.jsb.2004.04.007.CrossRefPubMedGoogle Scholar
  65. 65.
    Roedig, P., Ginn, H. M., Pakendorf, T., Sutton, G., Harlos, K., Walter, T. S., et al. (2017). High-speed fixed-target serial virus crystallography. Nature Methods, 14(8), 805–810.  https://doi.org/10.1038/nmeth.4335.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sauter, N. K., Echols, N., Adams, P. D., Zwart, P. H., Kern, J., Brewster, A. S., et al. (2016). No observable conformational changes in PSII. Nature, 533(7603), E1–E2.CrossRefGoogle Scholar
  67. 67.
    Schiro, G., Woodhouse, J., Weik, M., Schlichting, I., & Shoeman, R. L. (2017). Simple and efficient system for photoconverting light-sensitive proteins in serial crystallography experiments. Journal of Applied Crystallography, 50(3), 932–939.  https://doi.org/10.1107/S1600576717006264.CrossRefGoogle Scholar
  68. 68.
    Schlichting, I., Almo, S. C., Rapp, G., Wilson, K., Petratos, K., Lentfer, A., et al. (1990). Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature, 345(6273), 309–315.CrossRefGoogle Scholar
  69. 69.
    Schlichting, I., Berendzen, J., Chu, K., Stock, A. M., Maves, S. A., Benson, D. E., et al. (2000). The catalytic pathway of cytochrome p450cam at atomic resolution. Science, 287(5458), 1615–1622.CrossRefGoogle Scholar
  70. 70.
    Schlichting, I., & Miao, J. (2012). Emerging opportunities in structural biology with X-ray free-electron lasers. Current Opinion in Structural Biology, 22(5), 613–626.  https://doi.org/10.1016/j.sbi.2012.07.015. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Schmidt, M. (2013). Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Advances in Condensed Matter Physics, 2013, 10.  https://doi.org/10.1155/2013/167276.CrossRefGoogle Scholar
  72. 72.
    Schmidt, M., Rajagopal, S., Ren, Z., & Moffat, K. (2003). Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophysical Journal, 84(3), 2112–2129.  https://doi.org/10.1016/S0006-3495(03)75018-8.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., & Shank, C. V. (1991). The first step in vision: Femtosecond isomerization of rhodopsin. Science, 254(5030), 412–415.CrossRefGoogle Scholar
  74. 74.
    Schotte, F., Cho, H. S., Kaila, V. R., Kamikubo, H., Dashdorj, N., Henry, E. R., et al. (2012). Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19256–19261.  https://doi.org/10.1073/pnas.1210938109.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Schotte, F., Lim, M., Jackson, T. A., Smirnov, A. V., Soman, J., Olson, J. S., et al. (2003). Watching a protein as it functions with 150-ps time-resolved x-ray crystallography. Science, 300(5627), 1944–1947.  https://doi.org/10.1126/science.1078797.CrossRefPubMedGoogle Scholar
  76. 76.
    Schubert, R., Kapis, S., Gicquel, Y., Bourenkov, G., Schneider, T. R., Heymann, M., et al. (2016). A multicrystal diffraction data-collection approach for studying structural dynamics with millisecond temporal resolution. IUCrJ, 3(6), 393–401.  https://doi.org/10.1107/S2052252516016304.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shimada, A., Kubo, M., Baba, S., Yamashita, K., Hirata, K., Ueno, G., et al. (2017). A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. Science Advances, 3(7), e1603042.  https://doi.org/10.1126/sciadv.1603042.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sierra, R. G., Laksmono, H., Kern, J., Tran, R., Hattne, J., Alonso-Mori, R., et al. (2012). Nanoflow electrospinning serial femtosecond crystallography. Acta crystallographica Section D, Biological crystallography, 68(Pt 11), 1584–1587.  https://doi.org/10.1107/S0907444912038152.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Šrajer, V., T-y, T., Ursby, T., Pradervand, C., Ren, Z., Adachi, S.-i., et al. (1996). Photolysis of the carbon monoxide complex of myoglobin: Nanosecond time-resolved crystallography. Science, 274(5293), 1726.CrossRefGoogle Scholar
  80. 80.
    Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541(7636), 242–246.  https://doi.org/10.1038/nature20599.CrossRefPubMedGoogle Scholar
  81. 81.
    Stellato, F., Oberthur, D., Liang, M., Bean, R., Gati, C., Yefanov, O., et al. (2014). Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ, 1(Pt 4), 204–212.  https://doi.org/10.1107/S2052252514010070.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., et al. (2015). Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature, 517(7532), 99–103.  https://doi.org/10.1038/nature13991.CrossRefPubMedGoogle Scholar
  83. 83.
    Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., et al. (2017). Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature, 543(7643), 131–135.  https://doi.org/10.1038/nature21400.CrossRefPubMedGoogle Scholar
  84. 84.
    Sugahara, M., Mizohata, E., Nango, E., Suzuki, M., Tanaka, T., Masuda, T., et al. (2015). Grease matrix as a versatile carrier of proteins for serial crystallography. Nature Methods, 12(1), 61–63.  https://doi.org/10.1038/nmeth.3172.CrossRefPubMedGoogle Scholar
  85. 85.
    Sugahara, M., Nakane, T., Masuda, T., Suzuki, M., Inoue, S., Song, C., et al. (2017). Hydroxyethyl cellulose matrix applied to serial crystallography. Scientific Reports, 7(1), 703.  https://doi.org/10.1038/s41598-017-00761-0.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 24484.  https://doi.org/10.1038/srep24484.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.  https://doi.org/10.1126/science.1259357.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Terwilliger, T. C., & Berendzen, J. (1995). Difference refinement: Obtaining differences between two related structures. Acta Crystallographica. Section D, Biological Crystallography, 51(Pt 5), 609–618.CrossRefGoogle Scholar
  89. 89.
    Tosha, T., Nomura, T., Nishida, T., Saeki, N., Okubayashi, K., Yamagiwa, R., et al. (2017). Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate. Nature Communications, 8(1), 1585.  https://doi.org/10.1038/s41467-017-01702-1.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Umena, Y., Kawakami, K., Shen, J.-R., & Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature, 473, 55.  https://doi.org/10.1038/nature09913.CrossRefPubMedGoogle Scholar
  91. 91.
    Ursby, T., & Bourgeois, D. (1997). Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Crystallogr. Sect. A, 53(5), 564–575.  https://doi.org/10.1107/S0108767397004522.CrossRefGoogle Scholar
  92. 92.
    Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.  https://doi.org/10.1038/ncomms4309.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Weierstall, U., Spence, J. C., & Doak, R. B. (2012). Injector for scattering measurements on fully solvated biospecies. The Review of Scientific Instruments, 83(3), 035108.  https://doi.org/10.1063/1.3693040.CrossRefPubMedGoogle Scholar
  94. 94.
    Weinert, T., Olieric, N., Cheng, R., Brunle, S., James, D., Ozerov, D., et al. (2017). Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 8(1), 542.  https://doi.org/10.1038/s41467-017-00630-4.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wickstrand, C., Dods, R., Royant, A., & Neutze, R. (2015). Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochimica et Biophysica Acta, 1850(3), 536–553.  https://doi.org/10.1016/j.bbagen.2014.05.021.CrossRefPubMedGoogle Scholar
  96. 96.
    Wohri, A. B., Katona, G., Johansson, L. C., Fritz, E., Malmerberg, E., Andersson, M., et al. (2010). Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction. Science, 328(5978), 630–633.CrossRefGoogle Scholar
  97. 97.
    Yano, J., Kern, J., Irrgang, K. D., Latimer, M. J., Bergmann, U., Glatzel, P., et al. (2005). X-ray damage to the Mn4Ca complex in single crystals of photosystem II: A case study for metalloprotein crystallography. Proceedings of the National Academy of Sciences of the United States of America, 102(34), 12047–12052.CrossRefGoogle Scholar
  98. 98.
    Yeremenko, S., van Stokkum, I. H. M., Moffat, K., & Hellingwerf, K. J. (2006). Influence of the crystalline state on photoinduced dynamics of photoactive yellow protein studied by ultraviolet-visible transient absorption spectroscopy. Biophysical Journal, 90(11), 4224–4235.  https://doi.org/10.1529/biophysj.105.074765.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Young, I. D., Ibrahim, M., Chatterjee, R., Gul, S., Fuller, F. D., Koroidov, S., et al. (2016). Structure of photosystem II and substrate binding at room temperature. Nature, 540(7633), 453–457.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jacques-Philippe Colletier
    • 1
  • Giorgio Schirò
    • 1
  • Martin Weik
    • 1
  1. 1.Institute of Structural Biology, University Grenoble, Alpes, CEA, CNRSGrenobleFrance

Personalised recommendations