Advertisement

Advances in Structure Determination of G Protein-Coupled Receptors by SFX

  • Benjamin Stauch
  • Linda Johansson
  • Andrii Ishchenko
  • Gye Won Han
  • Alexander Batyuk
  • Vadim Cherezov
Chapter

Abstract

G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins, members of which are involved in regulation of critical sensory and physiological processes in the human body. High-resolution GPCR structures are essential for the elucidation of the molecular mechanisms of signal transduction, and for the rational design of more effective therapeutics. GPCR structure determination is, however, hampered by challenges in their expression, stabilization, and crystallization. The recent emergence of X-ray free electron lasers (FELs), and establishment of serial femtosecond crystallography (SFX) have advanced the field of structural biology by enabling access to high-resolution structure and dynamics of challenging to crystallize and radiation damage-sensitive macromolecules. In this chapter we outline relevant SFX technology developments and its applications to structural studies of GPCRs, shedding light on ligand binding to antitumor and anti-addiction targets, uncovering molecular mechanisms behind distinct functions of angiotensin receptors, elucidating full-length structures of multidomain class B and Frizzled receptors, and revealing details of interactions between GPCRs and arrestins.

References

  1. 1.
    Heng, B. C., Aubel, D., & Fussenegger, M. (2013). An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnology Advances, 31(8), 1676–1694.PubMedCrossRefGoogle Scholar
  2. 2.
    Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185–194.PubMedCrossRefGoogle Scholar
  3. 3.
    Audet, M., & Bouvier, M. (2012). Restructuring G-protein- coupled receptor activation. Cell, 151(1), 14–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Galandrin, S., Oligny-Longpre, G., & Bouvier, M. (2007). The evasive nature of drug efficacy: Implications for drug discovery. Trends in Pharmacological Sciences, 28(8), 423–430.PubMedCrossRefGoogle Scholar
  5. 5.
    Rajagopal, S., Rajagopal, K., & Lefkowitz, R. J. (2010). Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nature Reviews Drug Discovery, 9(5), 373–386.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews Drug Discovery, 5(12), 993–996.PubMedCrossRefGoogle Scholar
  7. 7.
    Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., et al. (2017). A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery, 16(1), 19–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. N., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16(12), 829–842.PubMedCrossRefGoogle Scholar
  9. 9.
    Chung, S., Funakoshi, T., & Civelli, O. (2008). Orphan GPCR research. British Journal of Pharmacology, 153(Suppl. 1), S339–S346.PubMedGoogle Scholar
  10. 10.
    Stockert, J. A., & Devi, L. A. (2015). Advancements in therapeutically targeting orphan GPCRs. Frontiers in Pharmacology, 6, 100.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Heydenreich, F. M., Vuckovic, Z., Matkovic, M., & Veprintsev, D. B. (2015). Stabilization of G protein-coupled receptors by point mutations. Frontiers in Pharmacology, 6, 82.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chun, E., Thompson, A. A., Liu, W., Roth, C. B., Griffith, M. T., Katritch, V., et al. (2012). Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure, 20(6), 967–976.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Caffrey, M., & Cherezov, V. (2009). Crystallizing membrane proteins using lipidic mesophases. Nature Protocols, 4(5), 706–731.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Smith, J. L., Fischetti, R. F., & Yamamoto, M. (2012). Micro-crystallography comes of age. Current Opinion in Structural Biology, 22(5), 602–612.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Jahnichen, S., Blanchetot, C., Maussang, D., Gonzalez-Pajuelo, M., Chow, K. Y., Bosch, L., et al. (2010). CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20565–20570.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mujic-Delic, A., de Wit, R. H., Verkaar, F., & Smit, M. J. (2014). GPCR-targeting nanobodies: Attractive research tools, diagnostics, and therapeutics. Trends in Pharmacological Sciences, 35(5), 247–255.PubMedCrossRefGoogle Scholar
  17. 17.
    Ghosh, E., Kumari, P., Jaiman, D., & Shukla, A. K. (2015). Methodological advances: The unsung heroes of the GPCR structural revolution. Nature Reviews Molecular Cell Biology, 16(2), 69–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., et al. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318(5854), 1258–1265.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Stevens, R. C., Cherezov, V., Katritch, V., Abagyan, R., Kuhn, P., Rosen, H., et al. (2013). The GPCR network: A large-scale collaboration to determine human GPCR structure and function. Nature Reviews Drug Discovery, 12(1), 25–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Carpenter, B., Nehme, R., Warne, T., Leslie, A. G., & Tate, C. G. (2016). Structure of the adenosine A (2A) receptor bound to an engineered G protein. Nature, 536(7614), 104–107.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., et al. (2011). Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature, 477(7366), 549–555.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schioth, H. B., & Fredriksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. General and Comparative Endocrinology, 142(1–2), 94–101. PubMedCrossRefGoogle Scholar
  24. 24.
    Pal, K., Melcher, K., & Xu, H. E. (2012). Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors. Acta Pharmacologica Sinica, 33(3), 300–311.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kniazeff, J., Prezeau, L., Rondard, P., Pin, J. P., & Goudet, C. (2011). Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacology & Therapeutics, 130(1), 9–25.CrossRefGoogle Scholar
  26. 26.
    Zhang, H., Qiao, A., Yang, D., Yang, L., Dai, A., de Graaf, C., et al. (2017). Structure of the full-length glucagon class B G-protein-coupled receptor. Nature, 546(7657), 259–264.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhang, X., Zhao, F., Wu, Y., Yang, J., Han, G. W., Zhao, S., et al. (2017). Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nature Communications, 8, 15383.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In C. S. Stuart (Ed.), Methods in neurosciences (pp. 366–428). Cambridge, MA: Academic Press.Google Scholar
  29. 29.
    Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., et al. (2015). Generic GPCR residue numbers—Aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36(1), 22–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Johansson, L. C., Stauch, B., Ishchenko, A., & Cherezov, V. (2017). A bright future for serial femtosecond crystallography with XFELs. Trends in Biochemical Sciences, 42(9), 749–762.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ishchenko, A., Cherezov, V., & Liu, W. (2016). Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography. Journal of Visualized Experiments, 115, e54463.Google Scholar
  33. 33.
    Liu, W., Ishchenko, A., & Cherezov, V. (2014). Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nature Protocols, 9(9), 2123–2134.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRefGoogle Scholar
  35. 35.
    Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zhang, H., Han, G. W., Batyuk, A., Ishchenko, A., White, K. L., Patel, N., et al. (2017). Structural basis for selectivity and diversity in angiotensin II receptors. Nature, 544(7650), 327–332.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Science Advances, 2(9), e1600292.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ishchenko, A., Wacker, D., Kapoor, M., Zhang, A., Han, G. W., Basu, S., et al. (2017). Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8223–8228.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A., & Stevens, R. C. (2008). Microscale fluorescent thermal stability assay for membrane proteins. Structure, 16(3), 351–359.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fenalti, G., Abola, E. E., Wang, C., Wu, B., & Cherezov, V. (2015). Fluorescence recovery after photobleaching in lipidic cubic phase (LCP-FRAP): A precrystallization assay for membrane proteins. Methods in Enzymology, 557, 417–437.PubMedCrossRefGoogle Scholar
  41. 41.
    Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4, 419–437.PubMedCrossRefGoogle Scholar
  42. 42.
    Barnes, C. O., Kovaleva, E. G., Fu, X., Stevenson, H. P., Brewster, A. S., DePonte, D. P., et al. (2016). Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Archives of Biochemistry and Biophysics, 602, 61–68.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhou, X. E., He, Y., de Waal, P. W., Gao, X., Kang, Y., Van Eps, N., et al. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell, 170(3), 457–469 e13.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Boutet, S., & Williams, G. J. (2010). The coherent X-ray imaging (CXI) instrument at the linac coherent light source (LCLS). New Journal of Physics, 12(3), 035024.CrossRefGoogle Scholar
  45. 45.
    DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., et al. (2008). Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D-Applied Physics, 41(19), 195505.CrossRefGoogle Scholar
  46. 46.
    Brehm, W., & Diederichs, K. (2014). Breaking the indexing ambiguity in serial crystallography. Acta Crystallographica. Section D, Biological Crystallography, 70(1), 101–109.PubMedCrossRefGoogle Scholar
  47. 47.
    Ginn, H. M., Roedig, P., Kuo, A., Evans, G., Sauter, N. K., Ernst, O. P., et al. (2016). TakeTwo: An indexing algorithm suited to still images with known crystal parameters. Acta Crystallographica Section D: Structural Biology, 72(8), 956–965.CrossRefGoogle Scholar
  48. 48.
    Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A., O’Grady, C., et al. (2016). OnDA: Online data analysis and feedback for serial X-ray imaging. Journal of Applied Crystallography, 49(3), 1073–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sauter, N. K. (2015). XFEL diffraction: Developing processing methods to optimize data quality. Journal of Synchrotron Radiation, 22(2), 239–248.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sauter, N. K., Hattne, J., Brewster, A. S., Echols, N., Zwart, P. H., & Adams, P. D. (2014). Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallographica Section D: Biological Crystallography, 70(12), 3299–3309.CrossRefGoogle Scholar
  51. 51.
    White, T. A. (2014). Post-refinement method for snapshot serial crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130330.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A., Beyerlein, K. R., et al. (2016). Recent developments in CrystFEL. Journal of Applied Crystallography, 49(2), 680–689.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X. P., Vardy, E., et al. (2013). Structural features for functional selectivity at serotonin receptors. Science, 340(6132), 615–619.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fraser, J. S., van den Bedem, H., Samelson, A. J., Lang, P. T., Holton, J. M., Echols, N., et al. (2011). Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16247–16252.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang, C., Wu, H., Evron, T., Vardy, E., Han, G. W., Huang, X. P., et al. (2014). Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nature Communications, 5, 4355.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Abdelhamid, E. E., Sultana, M., Portoghese, P. S., & Takemori, A. E. (1991). Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. The Journal of Pharmacology and Experimental Therapeutics, 258(1), 299–303.PubMedGoogle Scholar
  58. 58.
    Zhang, H., Unal, H., Desnoyer, R., Han, G. W., Patel, N., Katritch, V., et al. (2015). Structural basis for ligand recognition and functional selectivity at angiotensin receptor. The Journal of Biological Chemistry, 290(49), 29127–29139.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Guimond, M. O., & Gallo-Payet, N. (2012). How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Frontiers in Endocrinology, 3, 164.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Porrello, E. R., Delbridge, L. M., & Thomas, W. G. (2009). The angiotensin II type 2 (AT2) receptor: An enigmatic seven transmembrane receptor. Frontiers in Bioscience, 14, 958–972.CrossRefGoogle Scholar
  61. 61.
    Nahmias, C., & Strosberg, A. D. (1995). The angiotensin AT2 receptor: Searching for signal-transduction pathways and physiological function. Trends in Pharmacological Sciences, 16(7), 223–225.PubMedCrossRefGoogle Scholar
  62. 62.
    Nouet, S., & Nahmias, C. (2000). Signal transduction from the angiotensin II AT2 receptor. Trends in Endocrinology and Metabolism, 11(1), 1–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., et al. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 739–745.PubMedCrossRefGoogle Scholar
  64. 64.
    Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., & Ernst, O. P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature, 454(7201), 183–187.PubMedCrossRefGoogle Scholar
  65. 65.
    Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krauss, N., et al. (2011). Crystal structure of metarhodopsin II. Nature, 471(7340), 651–655.PubMedCrossRefGoogle Scholar
  66. 66.
    Hirsch, J. A., Schubert, C., Gurevich, V. V., & Sigler, P. B. (1999). The 2.8 A crystal structure of visual arrestin: A model for arrestin’s regulation. Cell, 97(2), 257–269.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim, Y. J., Hofmann, K. P., Ernst, O. P., Scheerer, P., Choe, H. W., & Sommer, M. E. (2013). Crystal structure of pre-activated arrestin p44. Nature, 497(7447), 142–146.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhou, X. E., Gao, X., Barty, A., Kang, Y., He, Y., Liu, W., et al. (2016). X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Scientific Data, 3, 160021.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Siu, F. Y., He, M., de Graaf, C., Han, G. W., Yang, D., Zhang, Z., et al. (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature, 499(7459), 444–449.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang, C., Wu, H., Katritch, V., Han, G. W., Huang, X. P., Liu, W., et al. (2013). Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497(7449), 338–343.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nachtergaele, S., Mydock, L. K., Krishnan, K., Rammohan, J., Schlesinger, P. H., Covey, D. F., et al. (2012). Oxysterols are allosteric activators of the oncoprotein smoothened. Nature Chemical Biology, 8(2), 211–220.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gorojankina, T. (2016). Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cellular and Molecular Life Sciences, 73(7), 1317–1332.PubMedCrossRefGoogle Scholar
  73. 73.
    Byrne, E. F. X., Sircar, R., Miller, P. S., Hedger, G., Luchetti, G., Nachtergaele, S., et al. (2016). Structural basis of smoothened regulation by its extracellular domains. Nature, 535(7613), 517–522.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bortolato, A., Dore, A. S., Hollenstein, K., Tehan, B. G., Mason, J. S., & Marshall, F. H. (2014). Structure of class B GPCRs: New horizons for drug discovery. British Journal of Pharmacology, 171(13), 3132–3145.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jazayeri, A., Dore, A. S., Lamb, D., Krishnamurthy, H., Southall, S. M., Baig, A. H., et al. (2016). Extra-helical binding site of a glucagon receptor antagonist. Nature, 533(7602), 274–277.PubMedCrossRefGoogle Scholar
  76. 76.
    Hutchings, C. J., Koglin, M., Olson, W. C., & Marshall, F. H. (2017). Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nature Reviews Drug Discovery, 16(9), 787–810.PubMedCrossRefGoogle Scholar
  77. 77.
    Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., & Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nature Biotechnology, 32(1), 40–51.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., et al. (2013). Structural basis for molecular recognition at serotonin receptors. Science, 340(6132), 610–614.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Barends, T. R., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505(7482), 244–247.PubMedCrossRefGoogle Scholar
  80. 80.
    Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Colletier, J. P., Sawaya, M. R., Gingery, M., Rodriguez, J. A., Cascio, D., Brewster, A. S., et al. (2016). De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 539(7627), 43–47.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., et al. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hendrickson, W. A., & Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290(5802), 107–113.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3(3), 180–191.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Fenalti, G., Giguere, P. M., Katritch, V., Huang, X. P., Thompson, A. A., Cherezov, V., et al. (2014). Molecular control of delta-opioid receptor signalling. Nature, 506(7487), 191–196.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liu, W., Chun, E., Thompson, A. A., Chubukov, P., Xu, F., Katritch, V., et al. (2012). Structural basis for allosteric regulation of GPCRs by sodium ions. Science, 337(6091), 232–236.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Weinert, T., Olieric, N., Cheng, R., Brunle, S., James, D., Ozerov, D., et al. (2017). Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 8(1), 542.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hart, P., Boutet, S., Carini, G., Dragone, A., Duda, B., Freytag, D., et al. (2012). The cornell-SLAC pixel array detector at LCLS. Presented at 2012 Nuclear Science Symposium, Medical Imaging Conference Anaheim, CA. SLAC-PUB-15284.Google Scholar
  89. 89.
    Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A., et al. (2014). Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. Journal of Applied Crystallography, 47(3), 1118–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: A software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45(2), 335–341.CrossRefGoogle Scholar
  91. 91.
    Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130337.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Latorraca, N. R., Venkatakrishnan, A. J., & Dror, R. O. (2017). GPCR dynamics: Structures in motion. Chemical Reviews, 117(1), 139–155.PubMedCrossRefGoogle Scholar
  94. 94.
    Congreve, M., Dias, J. M., & Marshall, F. H. (2014). Chapter one - structure-based drug design for G protein-coupled receptors. In G. Lawton & D. R. Witty (Eds.), Progress in medicinal chemistry (pp. 1–63). New York: Elsevier.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Benjamin Stauch
    • 1
  • Linda Johansson
    • 1
  • Andrii Ishchenko
    • 1
  • Gye Won Han
    • 1
  • Alexander Batyuk
    • 2
  • Vadim Cherezov
    • 1
  1. 1.Department of ChemistryBridge Institute, University of Southern CaliforniaLos AngelesUSA
  2. 2.Linac Coherent Light SourceStanford Linear Accelerator Center (SLAC) National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations