Advertisement

Virtual Screening for the Discovery of Active Principles from Natural Products

  • Benjamin Kirchweger
  • Judith M. Rollinger
Chapter

Abstract

Computational methods are a powerful knowledge-based a approach that helps to select plant material or natural products (NP) with an increased likelihood for biological activity. These methods enable the rationalization of biological activities of NP and contribute to putative protein-ligand binding characteristics of these molecules. In this way, focusing on information about highly ranked virtual hits from properly validated in silico models is a rationale to streamline experimental efforts. In silico approaches can focus on well-known constituents of herbal remedies as well as on any natural compound with relevant biological effects directly retrieved from the literature. They might further be helpful for the selection of promising starting material for an experimental work-up. This chapter provides a general overview to students and researchers, who will step in this emerging and exciting field of science. It gives a brief introduction into the field of cheminformatics and presents different virtual screening strategies implemented in pharmacognostic workflows to point out opportunities and challenges in NP-based drug discovery.

Keywords

Virtual screening Chemoinformatics Pharmacophore modeling In silico Drug discovery 

References

  1. Acharya C, Coop A, Polli JE et al (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 7:10–22PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adcock SA, Mccammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adhami HR, Linder T, Kaehlig H et al (2012) Catechol alkenyls from Semecarpus anacardium: acetylcholinesterase inhibition and binding mode predictions. J Ethnopharmacol 139(1):142–8PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akella LB, Decaprio D (2010) Cheminformatics approaches to analyze diversity in compound screening libraries. Curr Opin Chem Biol 14:325–330PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797PubMedPubMedCentralCrossRefGoogle Scholar
  6. Atanasov AG, Blunder M, Fakhrudin N et al (2013) Polyacetylenes from Notopterygium incisum – new selective partial agonists of peroxisome proliferator-activated receptor-gamma. PLoS One 8:e61755PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baell JB (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79:616–628PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bajorath J (2001) Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. J Chem Inf Comput Sci 41:233–245PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bajorath J (2017) Molecular similarity concepts for informatics applications. Methods Mol Biol 1526:231–245PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform 7:20PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balaban AT (1997) Neural networks in QSAR and drug design. In: J Devillers (ed) vol. 2 in the series: principles of QSAR and drug design. J Chem Inf Comput Sci 37:628–629Google Scholar
  12. Ban F, Dalal K, Li H et al (2017) Best practices of computer-aided drug discovery: lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action. J Chem Inf Model 57:1018–1028PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090PubMedCrossRefGoogle Scholar
  14. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  15. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980CrossRefGoogle Scholar
  16. Bock A, Bermudez M, Krebs F et al (2016) Ligand binding ensembles determine graded agonist efficacies at a G protein-coupled receptor. J Biol Chem 291:16375–16389PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bowman GR, Bolin ER, Hart KM et al (2015) Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Proc Natl Acad Sci U S A 112:2734–2739PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brandt BW, Heringa J, Leunissen JA (2008) SEQATOMS: a web tool for identifying missing regions in PDB in sequence context. Nucleic Acids Res 36:W255–W259PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brown FK (1998) Chapter 35 – Chemoinformatics: what is it and how does it impact drug discovery. Annu Rep Med Chem 33:375–384Google Scholar
  20. Campbell AJ, Lamb ML, Joseph-Mccarthy D (2014) Ensemble-based docking using biased molecular dynamics. J Chem Inf Model 54:2127–2138PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cavasotto CN, Orry AJ (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chavan S, Nicholls IA, Karlsson BC et al (2014) Towards global QSAR model building for acute toxicity: Munro database case study. Int J Mol Sci 15:18162–18174PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen YC (2015) Beware of docking! Trends Pharmacol Sci 36:78–95PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen X, Ung CY, Chen Y (2003) Can an in silico drug-target search method be used to probe potential mechanisms of medicinal plant ingredients? Nat Prod Rep 20:432–444PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen Y, De Bruyn Kops C, Kirchmair J (2017) Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model 57:2099–2111PubMedPubMedCentralCrossRefGoogle Scholar
  26. Claude Cohen N (2007) Medicine pipeline: structure-based drug design and the discovery of aliskiren (Tekturna®): perseverance and creativity to overcome a R&D pipeline challenge. Chem Biol Drug Des 70:557–565CrossRefGoogle Scholar
  27. Cordier C, Morton D, Murrison S et al (2008) Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries. Nat Prod Rep 25:719–737PubMedPubMedCentralCrossRefGoogle Scholar
  28. Corwin HA, Leo DH, Hoekman D (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. Hydrophobic, electronic, and steric constants. American Chemical Society, Washington, DCGoogle Scholar
  29. Dalby A, Nourse JG, Hounshell WD et al (1992) Description of several chemical structure file formats used by computer programs developed at molecular design limited. J Chem Inf Comput Sci 32:244–255CrossRefGoogle Scholar
  30. Danishuddin KAU (2016) Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today 21:1291–1302PubMedPubMedCentralCrossRefGoogle Scholar
  31. De vivo M, Masetti M, Bottegoni G et al (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061PubMedPubMedCentralCrossRefGoogle Scholar
  32. Doman TN, Mcgovern SL, Witherbee BJ et al (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 45:2213–2221PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ebejer JP, Morris GM, Deane CM (2012) Freely available conformer generation methods: how good are they? J Chem Inf Model 52:1146–1158PubMedPubMedCentralCrossRefGoogle Scholar
  34. El-Houri RB, Mortier J, Murgueitio MS et al (2015) Identification of PPARγ agonists from natural sources using different in silico approaches. Planta Med 81:488–494PubMedPubMedCentralGoogle Scholar
  35. Evers A, Hessler G, Matter H et al (2005) Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 48:5448–5465PubMedPubMedCentralCrossRefGoogle Scholar
  36. Feig M, Sugita Y (2013) Reaching new levels of realism in modeling biological macromolecules in cellular environments. J Mol Graph Model 45:144–156PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fernandez-Leiro R, Scheres SHW (2016) Unravelling the structures of biological macromolecules by cryo-EM. Nature 537:339–346PubMedPubMedCentralCrossRefGoogle Scholar
  38. Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399PubMedPubMedCentralCrossRefGoogle Scholar
  39. Friedrich NO, De Bruyn Kops C, Flachsenberg F et al (2017) Benchmarking commercial conformer ensemble generators. J Chem Inf Model 57:2719–2728PubMedPubMedCentralCrossRefGoogle Scholar
  40. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fu W, Chen L, Wang Z et al (2016) Determination of the binding mode for anti-inflammatory natural product xanthohumol with myeloid differentiation protein 2. Drug Des Devel Ther 10:455–463PubMedPubMedCentralGoogle Scholar
  42. Gasteiger J, Engel T (2003) Chemoinformatics: a textbook. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  43. Gasteiger J (2016) Chemoinformatics: achievements and challenges, a personal view. Molecules 21:151PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107PubMedCrossRefGoogle Scholar
  45. Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35:3–14PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68PubMedPubMedCentralCrossRefGoogle Scholar
  47. Goldmann D, Pakfeifer P, Hering S et al (2015) Novel scaffolds for modulation of TRPV1 identified with pharmacophore modeling and virtual screening. Future Med Chem 7:243–256PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gong J, Sun P, Jiang N et al (2014) New steroids with a rearranged skeleton as (h)P300 inhibitors from the sponge theonella swinhoei. Org Lett 16:2224–2227PubMedPubMedCentralCrossRefGoogle Scholar
  49. Grienke U, Mihaly-Bison J, Schuster D et al (2011) Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum. Bioorg Med Chem 19(22):6779–6791PubMedPubMedCentralCrossRefGoogle Scholar
  50. Grienke U, Braun H, Seidel N et al (2014) Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod 77:563–570PubMedPubMedCentralCrossRefGoogle Scholar
  51. Grienke U, Kaserer T, Pfluger F et al (2015) Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry 114:114–124PubMedPubMedCentralCrossRefGoogle Scholar
  52. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gu J, Gui Y, Chen L et al (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 8:e62839PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gumbart JC, Roux B, Chipot C (2013) Standard binding free energies from computer simulations: what is the best strategy? J Chem Theory Comput 9:794–802PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ha H, Debnath B, Odde S (2015) Discovery of novel CXCR2 inhibitors using ligand-based pharmacophore models. J Chem Inf Model 55:1720–1738PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hansch C, Maloney PP, Fujita T et al (1962) Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature 194:178–180CrossRefGoogle Scholar
  57. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hauser AS, Windshügel B (2016) LEADS-PEP: a benchmark data set for assessment of peptide docking performance. J Chem Inf Model 56:188–200PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hauser AS, Attwood MM, Rask-Andersen M et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82CrossRefGoogle Scholar
  61. Henrick K, Feng Z, Bluhm WF et al (2008) Remediation of the protein data bank archive. Nucleic Acids Res 36:D426–D433PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hessler G, Baringhaus KH (2010) The scaffold hopping potential of pharmacophores. Drug Discov Today Technol 7:e263–e269CrossRefGoogle Scholar
  63. Hochleitner J, Akram M, Ueberall M et al (2017) A combinatorial approach for the discovery of cytochrome P450 2D6 inhibitors from nature. Sci Rep 7:8071PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hu Y, Stumpfe D, Bajorath J (2013) Advancing the activity cliff concept. F1000Research 2:199PubMedPubMedCentralCrossRefGoogle Scholar
  65. Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22:133–139PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jayaseelan KV, Moreno P, Truszkowski A et al (2012) Natural product-likeness score revisited: an open-source, open-data implementation. BMC Bioinformatics 13:106PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748PubMedPubMedCentralCrossRefGoogle Scholar
  69. Karaboga AS, Planesas JM, Petronin F et al (2013) Highly specific and sensitive pharmacophore model for identifying CXCR4 antagonists. Comparison with docking and shape-matching virtual screening performance. J Chem Inf Model 53:1043–1056PubMedPubMedCentralCrossRefGoogle Scholar
  70. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kaserer T, Schuster D, Rollinger JM (2018) Chapter 6.3. Chemoinformatics in natural product research. In: Applied chemoinformatics: achievements and future opportunities. Wiley-VCH, WeinheimGoogle Scholar
  72. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213CrossRefGoogle Scholar
  73. Kirchmair J, Markt P, Distinto S et al (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection – what can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kirchmair J, Distinto S, Markt P et al (2009) How to optimize shape-based virtual screening: choosing the right query and including chemical information. J Chem Inf Model 49:678–692PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kirchmair J, Goller AH, Lang D et al (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14:387–404PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kirchweger B, Kratz JM, Ladurner A et al (2018) In silico workflow for the identification of natural products targeting GPBAR1. Front Chem 6:242PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kitchen DB, Decornez H, Furr JR (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949PubMedPubMedCentralCrossRefGoogle Scholar
  78. Klabunde T, Evers A (2005) GPCR antitarget modeling: pharmacophore models for biogenic amine binding GPCRs to avoid GPCR-mediated side effects. Chembiochem 6:876–889PubMedPubMedCentralCrossRefGoogle Scholar
  79. Koeberle A, Werz O (2014) Multi-target approach for natural products in inflammation. Drug Discov Today 19:1871–1882PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kortagere S, Krasowski MD, Ekins S (2009) The importance of discerning shape in molecular pharmacology. Trends Pharmacol Sci 30:138–147PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kratz JM, Schuster D, Edtbauer M et al (2014) Experimentally validated HERG pharmacophore models as cardiotoxicity prediction tools. J Chem Inf Model 54:2887–2901PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kratz JM, Mair CE, Oettl SK et al (2016) hERG channel blocking ipecac alkaloids identified by combined in silico – in vitro screening. Planta Med 82(11–12):1009–1015PubMedPubMedCentralGoogle Scholar
  83. Kratz JM, Grienke U, Scheel O et al (2017) Natural products modulating the hERG channel: heartaches and hope. Nat Prod Rep 34:957–980PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lagorce D, Bouslama L, Becot J et al (2017) FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 33:3658–3660PubMedPubMedCentralCrossRefGoogle Scholar
  85. Langer T, Wolber G (2004) Pharmacophore definition and 3D searches. Drug Discov Today Technol 1:203–207PubMedPubMedCentralCrossRefGoogle Scholar
  86. Larsson J, Gottfries J, Muresan S et al (2007) ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 70:789–794PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lipinski CA, Lombardo F, Dominy BW et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu K, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J Chem Inf Model 57:2514–2522PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lo YC, Rensi SE, Torng W et al (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today S1359-6446(17):30469–30465Google Scholar
  91. Ma DL, Chan DSH, Leung CH (2011) Molecular docking for virtual screening of natural product databases. Chem Sci 2:1656–1665CrossRefGoogle Scholar
  92. Macarron R (2006) Critical review of the role of HTS in drug discovery. Drug Discov Today 11:277–279PubMedPubMedCentralCrossRefGoogle Scholar
  93. Makeneni S, Thieker DF, Woods RJ (2018) Applying pose clustering and md simulations to eliminate false positives in molecular docking. J Chem Inf Model 58:605–614PubMedPubMedCentralCrossRefGoogle Scholar
  94. Malo M, Brive L, Luthman K et al (2010) Selective pharmacophore models of dopamine D(1) and D(2) full agonists based on extended pharmacophore features. ChemMedChem 5:232–246PubMedPubMedCentralCrossRefGoogle Scholar
  95. Matthias B, Clare H (2011) The Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. R.E.C.I.E.L. 20:47–61Google Scholar
  96. Medina-Franco JL, Maggiora GM, Giulianotti MA et al (2007) A similarity-based data-fusion approach to the visual characterization and comparison of compound databases. Chem Biol Drug Des 70:393–412PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mollica L, Decherchi S, Zia SR et al (2015) Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep 5:11539PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mortier J, Prévost JRC, Sydow D et al (2017) Arginase structure and inhibition: catalytic site plasticity reveals new modulation possibilities. Sci Rep 7:13616PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mulholland K, Wu C (2016) Binding of telomestatin to a telomeric g-quadruplex dna probed by all-atom molecular dynamics simulations with explicit solvent. J Chem Inf Model 56:2093–2102PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mysinger MM, Carchia M, Irwin JJ et al (2012) Directory of useful decoys, enhanced (dud-e): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity – a review. QSAR Comb Sci 22:1006–1026CrossRefGoogle Scholar
  102. O’Boyle NM (2012) Towards a Universal SMILES representation – a standard method to generate canonical SMILES based on the InChI. J Cheminform 4:22–22PubMedPubMedCentralCrossRefGoogle Scholar
  103. Oda A, Tsuchida K, Takakura T et al (2006) Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. J Chem Inf Model 46:380–391PubMedPubMedCentralCrossRefGoogle Scholar
  104. Osterberg F, Morris GM, Sanner MF et al (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–40PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102PubMedPubMedCentralCrossRefGoogle Scholar
  106. Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pang YP, Kozikowski AP (1994) Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J Comput Aided Mol Des 8:669–681PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14PubMedPubMedCentralCrossRefGoogle Scholar
  109. Payne DJ, Gwynn MN, Holmes DJ et al (2006) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pereira JC, Caffarena ER, Dos Santos CN (2016) boosting docking-based virtual screening with deep learning. J Chem Inf Model 56:2495–2506PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pye CR, Bertin MJ, Lokey RS et al (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci U S A 114:5601–5606PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rastelli G, Degliesposti G, Del Rio A et al (2009) Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening. Chem Biol Drug Des 73:283–286PubMedPubMedCentralCrossRefGoogle Scholar
  113. Reker D, Perna AM, Rodrigues T et al (2014) Revealing the macromolecular targets of complex natural products. Nat Chem 6:1072–1078PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ren J, He Y, Chen W et al (2014) Thermodynamic and structural characterization of halogen bonding in protein-ligand interactions: a case study of PDE5 and its inhibitors. J Med Chem 57:3588–3593PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rester U (2008) From virtuality to reality – virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 11:559–568PubMedPubMedCentralGoogle Scholar
  116. Reymond JL, Van Deursen R, Blum LC et al (2010) Chemical space as a source for new drugs. Med Chem Comm 1:30–38CrossRefGoogle Scholar
  117. Rodrigues T, Sieglitz F, Somovilla VJ et al (2016) Unveiling (−)-Englerin A as a modulator of l-type calcium channels. Angewandte Chemie (International Ed in English) 55:11077–11081CrossRefGoogle Scholar
  118. Rollinger JM (2009) Accessing target information by virtual parallel screening – the impact on natural product research. Phytochem Lett 2:53–58CrossRefGoogle Scholar
  119. Rollinger JM, Wolber G (2011) Computational approaches for the discovery of natural lead structures. In: Bioactive compounds from natural sources, Natural products as lead compounds in drug discovery, 2nd edn. CRC Press, Boca Raton, pp 167–186Google Scholar
  120. Rollinger JM, Haupt S, Stuppner H et al (2004) Combining ethnopharmacology and virtual screening for lead structure discovery: COX-inhibitors as application example. J Chem Inf Comput Sci 44:480–488PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rollinger JM, Bodensieck A, Seger A et al (2005) Discovering COX-inhibiting constituents of Morus root bark: activity-guided versus computer-aided methods. Planta Med 71:399–405PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rollinger JM, Langer T, Stuppner H (2006a) Integrated in silico tools for exploiting the natural products’ bioactivity. Planta Med 72:671–678PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rollinger JM, Langer T, Stuppner H (2006b) Strategies for efficient lead structure discovery from natural products. Curr Med Chem 13:1491–1507PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rollinger JM, Steindl TM, Schuster D et al (2008) Structure-based virtual screening for the discovery of natural inhibitors for human rhinovirus coat protein. J Med Chem 51:842–851PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rollinger JM, Schuster D, Danzl B et al (2009) In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens. Planta Med 75:195–204PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rush TS, Grant JA, Mosyak L et al (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein−protein interaction. J Med Chem 48:1489–1495PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sabbadin D, Ciancetta A, Moro S (2014) Bridging molecular docking to membrane molecular dynamics to investigate GPCR-Ligand recognition: the human A2A adenosine receptor as a key study. J Chem Inf Model 54:169–183PubMedPubMedCentralCrossRefGoogle Scholar
  128. Santos R, Ursu O, Gaulton A (2016) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19CrossRefGoogle Scholar
  129. Sawada R, Kotera M, Yamanishi Y (2014) Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inform 33:719–731PubMedPubMedCentralGoogle Scholar
  130. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273–276PubMedPubMedCentralCrossRefGoogle Scholar
  131. Schneider G (2017) Automating drug discovery. Nat Rev Drug Discov 17:97PubMedPubMedCentralCrossRefGoogle Scholar
  132. Schneider P, Schneider G (2017) A computational method for unveiling the target promiscuity of pharmacologically active compounds. Angew Chem Int Ed Engl 56:11520–11524PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schuster D, Waltenberger B, Kirchmair J et al (2010) Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part I: model generation, validation and applicability in ethnopharmacology. Mol Inform 29:75–86PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schuster D, Markt P, Grienke U et al (2011) Pharmacophore-based discovery of FXR agonists. Part I: model development and experimental validation. Bioorganic Med Chem 19:7168–7180CrossRefGoogle Scholar
  135. Scior T, Bender A, Tresadern G et al (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881PubMedPubMedCentralCrossRefGoogle Scholar
  136. Seidel T, Ibis G, Bendix F et al (2010) Strategies for 3D pharmacophore-based virtual screening. Drug Discov Today Technol 7:e221–e228CrossRefGoogle Scholar
  137. Sheridan RP (2008) Alternative global goodness metrics and sensitivity analysis: heuristics to check the robustness of conclusions from studies comparing virtual screening methods. J Chem Inf Model 48:426–433PubMedPubMedCentralCrossRefGoogle Scholar
  138. Shin WH, Zhu X, Bures MG et al (2015) Three-dimensional compound comparison methods and their application in drug discovery. Molecules 20:12841–12862PubMedPubMedCentralCrossRefGoogle Scholar
  139. Shoichet BK, Mcgovern SL, Wei B et al (2002) Lead discovery using molecular docking. Curr Opin Chem Biol 6:439–446PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sichao W, Youyon GL, Lei X et al (2013) Recent developments in computational prediction of hERG blockage. Curr Top Med Chem 13:1317–1326CrossRefGoogle Scholar
  141. Singh N, Guha R, Giulianotti MA et al (2009) Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 49:1010–1024PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sliwoski G, Kothiwale S, Meiler J et al (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sliwoski G, Mendenhall J, Meiler J (2016) Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign. JCAMD 30:209–217Google Scholar
  144. Sohn YS, Park C, Lee Y et al (2013) Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J Mol Graph Model 46:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sperandio O, Mouawad L, Pinto E et al (2010) How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis. Eur Biophys J 39:1365–1372PubMedPubMedCentralCrossRefGoogle Scholar
  146. Spitzer GM, Heiss M, Mangold M et al (2010) One Concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space. J Chem Inf Model 50:1241–1247PubMedPubMedCentralCrossRefGoogle Scholar
  147. Spyrakis F, Benedetti P, Decherchi S et al (2015) A Pipeline to enhance ligand virtual screening: integrating molecular dynamics and fingerprints for ligand and proteins. J Chem Inf Model 55:2256–2274PubMedPubMedCentralCrossRefGoogle Scholar
  148. Steindl TM, Schuster D, Laggner C et al (2006a) Parallel screening: a novel concept in pharmacophore modeling and virtual screening. J Chem Inf Model 46:2146–2157PubMedPubMedCentralCrossRefGoogle Scholar
  149. Steindl TM, Schuster D, Wolber G et al (2006b) High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. JCAMD 20:703–715Google Scholar
  150. Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5:39–41PubMedPubMedCentralCrossRefGoogle Scholar
  151. Stumpfe D, De La Vega De Leon A, Dimova D et al (2014) Advancing the activity cliff concept, part II. F1000Res 3:75PubMedPubMedCentralCrossRefGoogle Scholar
  152. Su H, Yan J, Xu J et al (2015) Stepwise high-throughput virtual screening of Rho kinase inhibitors from natural product library and potential therapeutics for pulmonary hypertension. Pharm Biol 53:1201–1206PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tarcsay A, Paragi G, Vass M et al (2013) The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs. J Chem Inf Model 53:2990–2999PubMedPubMedCentralCrossRefGoogle Scholar
  154. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. JCAMD 16:151–166Google Scholar
  155. Tetko IV (2003) The WWW as a tool to obtain molecular parameters. Mini Rev Med Chem 3:809–820PubMedPubMedCentralCrossRefGoogle Scholar
  156. Tian S, Sun H, Pan P et al (2014) Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility. J Chem Inf Model 54:2664–2679PubMedPubMedCentralCrossRefGoogle Scholar
  157. Todeschini R, Consonni V (2008) Handbook of molecular descriptors. Wiley-VCH, WeinheimGoogle Scholar
  158. Truchon JF, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508PubMedPubMedCentralCrossRefGoogle Scholar
  159. Van Drie JH (2010) History of 3D pharmacophore searching: commercial, academic and open-source tools. Drug Discov Today Technol 7:e255–e262CrossRefGoogle Scholar
  160. Varnek A, Baskin I (2012) Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model 52:1413–1437PubMedPubMedCentralCrossRefGoogle Scholar
  161. Veber DF, Johnson SR, Cheng HY et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623PubMedPubMedCentralCrossRefGoogle Scholar
  162. Vuorinen A, Engeli R, Meyer A et al (2014) Ligand-based pharmacophore modeling and virtual screening for the discovery of novel 17β-Hydroxysteroid dehydrogenase 2 inhibitors. J Med Chem 57:5995–6007PubMedPubMedCentralCrossRefGoogle Scholar
  163. Waltenberger B, Atanasov AG, Heiss EH et al (2016) Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project. Monatsh Chem 47:479–491CrossRefGoogle Scholar
  164. Wang G, Zhu W (2016) Molecular docking for drug discovery and development: a widely used approach but far from perfect. Future Med Chem 8:1707–1710PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wang JC, Chu PY, Chen CM et al (2012) idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res 40:W393–W399PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975PubMedPubMedCentralCrossRefGoogle Scholar
  167. Warren GL, Andrews CW, Capelli AM et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931CrossRefGoogle Scholar
  168. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31–36CrossRefGoogle Scholar
  169. Wermuth CG, Ganellin CR, Lindberg P et al (1998) Glossary of terms used in medicinal chemistry (IUPAC recommendations 1998). Pure Appl Chem 70:1129CrossRefGoogle Scholar
  170. Wetzel S, Schuffenhauer A, Roggo S et al (2007) Cheminformatic analysis of natural products and their chemical space. Chimia 61:355–360CrossRefGoogle Scholar
  171. Wieder M, Garon A, Perricone U et al (2017) Common Hits approach: combining pharmacophore modeling and molecular dynamics simulations. J Chem Inf Model 57:365–385PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wójcikowski M, Ballester PJ, Siedlecki P (2017) Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep 7:46710PubMedPubMedCentralCrossRefGoogle Scholar
  173. Yan SF, King FJ, He Y et al (2006) Learning from the data: mining of large high-throughput screening databases. J Chem Inf Model 46:2381–2395PubMedPubMedCentralCrossRefGoogle Scholar
  174. Yang Y, Xu Z, Zhang Z et al (2015) Like-charge guanidinium pairing between ligand and receptor: an unusual interaction for drug discovery and design? J Phys Chem B 119:11988–11997PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhu T, Cao S, Su PC et al (2013) Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem 56:6560–6572PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PharmacognosyUniversity of ViennaViennaAustria

Personalised recommendations