Advertisement

Syntheses of Asymmetrically Substituted Pyrans of Natural Origin

  • Wiesław Szeja
  • Grzegorz Grynkiewicz
Chapter

Abstract

Apart from pyranoid carbohydrates, which are the most abundant natural products, there are plenty of secondary metabolites, which contain six membered oxygen heterocyclic ring constituents that are bound in other than O-glycosidic manner. Diversely substituted or condensed pyrans are encountered among terrestrial and marine organism metabolites, which are otherwise classified as antibiotics, growth regulators, hormones, toxins, vitamins, and other biologically active compounds, often desirable in medicine and pharmacy as privileged structures. While their biogenesis may be very different, their structural features determine methodology by which their chemical synthesis can be achieved. In this chapter, the most important approaches to pyran ring construction are presented in form of a critical review and exemplified with preparation of compounds of particular significance for pharmacology and medicine. The survey starts with various modes of pyran-focused cyclizations, with many examples of hetero-Diels-Alder cycloaddition reactions in which configuration of all stereogenic centers is controlled. Another method of pyran synthesis which is of general use and great importance consists of the oxidative ring expansion, for which 2-furylcarbinols are used as substrates. This transformation, known as Achmatowicz rearrangement, was designed as a total synthetic approach to pyranosides, which gained significance when combined with recent achievements in catalytic stereoselection. The selection of methods for pyran preparation was illustrated by spectacular examples of application of syntheses, in which simple and complex natural products, including drug leads and registered new drugs (eribulin, gliflozins), were obtained in a stereo-controlled manner.

Keywords

Pyran ring construction Diels-Alder reaction Achmatowicz rearrangement Biological activity Natural products 

References

  1. Achmatowicz O (1981) An approach to the synthesis of higher-carbon sugars. In: Trost BM, Hutchinson CR (eds) Organic chemistry today and tomorrow. Pergamon, Oxford/New York, pp 307–318CrossRefGoogle Scholar
  2. Achmatowicz O, Szechner B, Zwierzchowska Z et al (1971) Synthesis of methyl 2,3-dideoxy-DL-alk-2-enopyranosides from furan compounds: a general approach to the total synthesis of monosaccharides. Tetrahedron 27:1973–1976CrossRefGoogle Scholar
  3. Adak L, Kawamura S, Toma G et al (2017) Synthesis of aryl C-glycosides via iron-catalyzed cross coupling of halosugars: stereoselective anomeric arylation of glycosyl radicals. J Am Chem Soc 139:10693–10701PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ahmed TS, Grubbs RH (2017) Fast-initiating, ruthenium-based catalysts for improved activity in highly E-selective cross metathesis. J Am Chem Soc 139:1532–1537PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aicher TD, Buszek KR, Fang FG et al (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114:3162–3164CrossRefGoogle Scholar
  6. Alemán J, Núñez A, Marzo L et al (2010) Asymmetric synthesis of 4-Amino-4H-Chromenes by organocatalytic oxa-Michael/Aza-Baylis–Hillman tandem reactions. Chem Eur J 16:9453–9456PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ali ES, Hua J, Wilson CH et al (2016) The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca2+ signalling in steatotic hepatocytes. BBA-Mol Cell Res 1863:2135–2146Google Scholar
  8. Aljahdali AZ, Shi P, Zhong Y, et al (2013) De novo asymmetric synthesis of the pyranoses: from monosaccharides to oligosaccharides. Adv Carbohydr Chem Biochem 69:55–123Google Scholar
  9. Allred TK, Manoni F, Harran PG (2017) Exploring the boundaries of “practical”: de novo syntheses of complex natural product-based drug candidates. Chem Rev 117:11994–12051PubMedCrossRefPubMedCentralGoogle Scholar
  10. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem Rev 102:439–469PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ansari AA, Lahiri R, Vankar YD (2013) The carbon-Ferrier rearrangement: an approach towards the synthesis of C-glycosides. ARKIVOC 11:316–362Google Scholar
  12. Asta C, Schmidt D, Conrad J et al (2013) The first enzymatic Achmatowicz reaction: selective laccase-catalyzed synthesis of 6-hydroxy-(2H)-pyran-3(6H)-ones and (2H).-pyran-2,5(6H)-diones. RSC Adv 3:19259–19263CrossRefGoogle Scholar
  13. Austad BC, Calkins TL, Chase CE et al (2013) Commercial manufacture of Halaven®: chemoselective transformations en route to structurally complex macrocyclic ketones. Synlett 24:333–337CrossRefGoogle Scholar
  14. Azuma T, Murata A, Kobayashi Y et al (2014) Arylboronic acid−aminothiourea catalytic system for the asymmetric intramolecular hetero-Michael reaction of α,β-unsaturated carboxylic acids. Org Lett 16:4256–4259PubMedCrossRefPubMedCentralGoogle Scholar
  15. Babu RS, Chen Q, Kang S-W et al (2012) GA. De novo asymmetric synthesis of all D- all L- and D-/L-oligosaccharides using atom-less protecting groups. J Am Chem Soc 134:11952–11955PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bai Y, Kim LMH, Liao H et al (2013) Oxidative Heck reaction of glycals and aryl hydrazines: a palladium-catalyzed C-glycosylation. J Org Chem 78:8821–8825PubMedCrossRefPubMedCentralGoogle Scholar
  17. Balachari D, O’Doherty GA (2000) Enantioselective synthesis of the papulacandin ring system: conversion of the mannose diastereoisomer into a glucose stereoisomer. Org Lett 2:4033–4036PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bandini M, Melloni A, Umani-Ronchi A (2004) New catalytic approaches in the stereoselective Friedel-Crafts alkylation reaction. Angew Chem Int Ed 43:550–556CrossRefGoogle Scholar
  19. Bennett CS (2017) Selective glycosylations: synthetic methods and catalysts. VCH, WeinheimCrossRefGoogle Scholar
  20. Bhat V, Welin ER, Guo X et al (2017) Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereo ablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem Rev 117:4528–4561PubMedCrossRefPubMedCentralGoogle Scholar
  21. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuel and chemicals. J Am Chem Soc 131:1979–1985PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bindseil KU, Zeeck A (1993) Metabolic products of microorganisms. Part 265 Prelactones C and B, oligoketides from streptomyces producing concanamycins and bafilomycins. Helv Chim Acta 76:150–157CrossRefGoogle Scholar
  23. Bokor E, Kun S, Goyard D et al (2017) C-glycosylarenes and hetarenes: synthetic methods and bioactivity focused on antidiabetic potential. Chem Rev 117:1687–1764PubMedCrossRefPubMedCentralGoogle Scholar
  24. Braem A, Deshpande PP, Ellsworth BA et al (2014) Discovery and development of selective renal sodium-dependent glucose cotransporter 2 (SGLT2) dapagliflozin for the treatment of type 2 diabetes. Top Med Chem 12:73–94CrossRefGoogle Scholar
  25. Branchaud BP, Meier MS (1989) A novel strategy for the synthesis of ammonium 3-deoxy-D-manno-2-octulosonate (ammonium KDO). from lower monosaccharides. C–C bond construction of C6 of D-mannose via cobaloxime-mediated radical alkyl-alkenyl cross coupling. J Org Chem 54:1320–1326CrossRefGoogle Scholar
  26. Brandau S, Landa A, Franzen J et al (2006) Organocatalytic conjugate addition of malonates to α,β-unsaturated aldehydes: asymmetric formal synthesis of (-).-Paroxetine, chiral lactams, and lactones. Angew Chem Int Ed 45:4305–4309CrossRefGoogle Scholar
  27. Brovetto M, Gamenara D, Saenz Méndez P et al (2011) C–C bond-forming lyases in organic synthesis. Chem Rev 111:4346–4403PubMedCrossRefPubMedCentralGoogle Scholar
  28. Burke SD, Quinn KJ, Chen VJ (1998) Synthesis of a C(22).-C(34). Halichondrin B precursor via ring opening-double ring closing metathesis. J Org Chem 63:8626–8627CrossRefGoogle Scholar
  29. Burke MD, Berger EM, Schreiber SL (2004) A synthesis strategy yielding skeletally diverse small molecules combinatorially. J Am Chem Soc 126:14095–14104PubMedCrossRefPubMedCentralGoogle Scholar
  30. Büschleb M, Dorich S, Hanessian S et al (2016) Synthetic strategies toward natural products containing contiguous stereogenic quaternary carbon atoms. Angew Chem Int Ed 55:4156–4186CrossRefGoogle Scholar
  31. Caberele C, Reiser O (2016) The modern face of synthetic heterocyclic chemistry. J Org Chem 81:10109–10125CrossRefGoogle Scholar
  32. Carreaux F, Favre A, Carboni B et al (2006) First synthesis of (+).-8-Methoxygoniodiol and its analogue, 8-Deoxygoniodiol, using a three component strategy. Tetrahedron Lett 47:4545–4548CrossRefGoogle Scholar
  33. Chang S, Grubbs RH (1998) A highly efficient and practical synthesis of chromene derivatives using ring-closing olefin metathesis. J Org Chem 63:864–866PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 7:40–71CrossRefGoogle Scholar
  35. Cherney AH, Kadunce NT, Reisman SE (2015) Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C−C bonds. Chem Rev 115:9587–9652PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183CrossRefGoogle Scholar
  37. Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975CrossRefGoogle Scholar
  38. Coombs TC, Lee MD, Wong H et al (2008) Practical, scalable, high-throughput approaches to η3-Pyranyl and η3-Pyridinyl organometallic enantiomeric scaffolds using the Achmatowicz reaction. J Org Chem 73:822–888CrossRefGoogle Scholar
  39. Corey EJ, Chelg X-M (1995) The logic of chemical synthesis. Wiley, New YorkGoogle Scholar
  40. Cornforth JW, Firth ME, Gottschalk A (1958) The synthesis of N-acetylneuraminic acid. Biochem J 68:57–61PubMedCrossRefPubMedCentralGoogle Scholar
  41. Czernecki S, Perlat MC (1991) C-glycosides 9. Stereospeific synhesis of C-glycosidic spiroketal of the papulacandins. J Org Chem 56:6289–6292CrossRefGoogle Scholar
  42. D’Ambrosio M, Guerriero A, Debitus C et al (1996) Leucascandrolide A, a new type of macrolide: the first powerfully bioactive metabolite of calcareous sponges Leucascandra caveolata, a new genus from the coral sea. Helv Chim Acta 79:51–60CrossRefGoogle Scholar
  43. Danishewsky SJ (1986) Reflection on organic synthesis: the evolution of a general strategy for stereoselective construction of polyoxygenated natural compounds. Aldrichimica Acta 19:59–65Google Scholar
  44. Danishewsky SJ, De Ninno MP (1987) Totally synthetic routes to the higher monosaccharides. Angew Chem Int Ed Engl 26:15–23Google Scholar
  45. Danishewsky SJ, Kerwin JF, Kobayashi S (1982) Lewis acid catalyzed cyclocondensations of functionalized dienes with aldehydes. J Am Chem Soc 104:358–360Google Scholar
  46. Danishewsky SJ, Pearson WH, Segmuller BE (1985) Total synthesis of (+ -).-3-Deoxy-D-manno-2-octulopyranosate (KDO). J Am Chem Soc 107:1280–1285Google Scholar
  47. Danishewsky SJ, DeNinno M, Chen S (1988) Stereoselective total syntheses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-D-manno-2-octulosonic acid. A new and stereospecific approach to sialo and 3-deoxy-D-manno-2-octulosonic acid conjugates. J Am Chem Soc 110:3929–3940Google Scholar
  48. Das R, Mukhopadhyay B (2016) Chemical O-glycosylations: an overview. ChemistryOpen 5:401–433PubMedCrossRefPubMedCentralGoogle Scholar
  49. Demchenko AV (2008) Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. Wiley VCH, WeinheimCrossRefGoogle Scholar
  50. Deshmukh PT, Gupta VB (2013) Embelin accelerates cutaneous wound healing in diabetic rats. J Asian Nat Prod Res 15:158–165PubMedCrossRefPubMedCentralGoogle Scholar
  51. Deshpande PP, Ellsworth BA, Buono FG et al (2007) Remarkable β-selectivity in the synthesis of β-1-C- arylglucosides: stereoselective reduction of acetyl-protected methyl 1C-arylglucosides without acetoxy-group participation. J Org Chem 72:9746–9749PubMedCrossRefPubMedCentralGoogle Scholar
  52. Deska J, Thiel D, Gianolio E (2015) The Achmatowicz rearrangement – oxidative ring expansion of furfuryl alcohols. Synthesis 47:3435–3450CrossRefGoogle Scholar
  53. Dondoni A, Marra A (2004) Thiazole-mediated synthetic methodology. Chem Rev 104:2557–2599PubMedCrossRefPubMedCentralGoogle Scholar
  54. Dondoni A, Merino P (1991) Chemistry of the enolates of 2-acetylthiazole: aldol reactions with chiral aldehydes to give 3-deoxy aldos-2-uloses and 3-deoxy 2-ulosonic acids a short total synthesis of 3-deoxy-d-manno-2-octulosonic acid (KDO). J Org Chem 56:5294–5301CrossRefGoogle Scholar
  55. Donner CD, Gill M, Tewierik LM (2004) Synthesis of pyran and pyranone natural products. Molecules 9:498–512PubMedCrossRefPubMedCentralGoogle Scholar
  56. Du H, Long J, Hu J et al (2002) 3,3’-Br2-BINOL-Zn complex: a highly efficient catalyst for the enantioselective hetero-Diels-Alder reaction. Org Lett 4:4349–4352PubMedCrossRefPubMedCentralGoogle Scholar
  57. Du H-F, Zhao D-B, Ding K-L (2004) Enantioselective catalysis of the hetero-Diels–Alder reaction between Brassard’s diene and aldehydes by hydrogen-bonding activation: a one-step synthesis of (S)-(+)-dihydrokawain. Chem Eur J 10:5964–5970PubMedCrossRefPubMedCentralGoogle Scholar
  58. Dusselier M, Mascal M, Sels BF (2014) Top chemical opportunities from carbohydrate biomass: a chemist’s view of the biorefinery. Top Curr Chem 353:1–40PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ehrenkranz JRL, Lewis NG, Kahn CR et al (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38PubMedCrossRefPubMedCentralGoogle Scholar
  60. El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C (2014) Brønsted acid catalyzed, conjugate addition of β-dicarbonyls to in situ generated ortho-quinone methides--enantioselective synthesis of 4-aryl-4H-chromenes. Angew Chem Int Ed 53:7923−7927PubMedCrossRefPubMedCentralGoogle Scholar
  61. Elming N (1960) Dialkoxydihydrofurans and diacyloxydihydrofurans as synthetic intermediates. Adv Org Chem 2:67–115Google Scholar
  62. Enders D, Grondal C, Hüttl MRM (2007) Asymmetric organocatalytic domino reactions. Angew Chem Int Ed 46:1570–1581CrossRefGoogle Scholar
  63. Etcheberrigaray R, Tan M, Dewachter I et al (2004) Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci U S A 101:11141–11146PubMedCrossRefPubMedCentralGoogle Scholar
  64. Evans DA, Carter PH, Carreira EM et al (1999) Total synthesis of bryostatin 2. J Am Chem Soc 121:7540–7552CrossRefGoogle Scholar
  65. Fan Q-H, Li Y-M, Chan ASC (2002) Recoverable catalysts for asymmetric organic synthesis. Chem Rev 102:3385–3466PubMedCrossRefPubMedCentralGoogle Scholar
  66. Fan Q, Lin L, Liu J et al (2004) Highly enantioselective hetero-Diels-Alder reaction of Brassard diene with aromatic aldehydes. Org Lett 6:2185–2188PubMedCrossRefPubMedCentralGoogle Scholar
  67. Favre A, Carreaux F, Deligny M et al (2008) Stereoselective synthesis of (+).-Goniodiol, (+).-Goniotriol, (−).-Goniofupyrone, and (+).-Altholactone using a catalytic asymmetric hetero Diels−Alder/Allylboration approach. Eur J Org Chem 29:4900–4907CrossRefGoogle Scholar
  68. Feng Y, Dong J, Xu F (2015) Efficient large scale syntheses of 3-deoxy-D-manno-2-octulosonic acid (Kdo) and its derivatives. Org Lett 17:2388–2391PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ferrier RJ, Hoberg JO (2003) Synthesis and reactions of unsaturated sugars. Adv Carbohydr Chem Biochem 58:55–111PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ferrier RJ, Zubkov OA (2003) Transformation of glycals into 2,3-unsaturated glycosyl derivatives. In: Overman LE (ed) Organic reactions, vol 62. Wiley, New York, pp 569–736CrossRefGoogle Scholar
  71. Foland LD, Karlsson JO, Perri ST et al (1989) Rearrangement of 4-alkynylcyclobutenones. A new synthesis of 1,4-benzoquinones. J Am Chem Soc 111:975–989CrossRefGoogle Scholar
  72. Franke PT, Richter B, Jørgensen KA (2008) Organocatalytic asymmetric synthesis of functionalized 3,4-dihydropyran derivatives. Chem Eur J 14:6317–6321PubMedCrossRefPubMedCentralGoogle Scholar
  73. Fraser-Reid B, Lopez JC (2009) Unsaturated sugars: a rich platform for methodological and synthetic studies. Curr Org Chem 13:532–553CrossRefGoogle Scholar
  74. Fukuyama T, Chiba H, Kuroda H et al (2016) Application of continuous flow for DIBAL-H reduction and N-BuLi mediated coupling reaction in the synthesis of eribulin mesylate. Org Process Res Dev 20:503–509CrossRefGoogle Scholar
  75. Gademann K, Chavez DE, Jacobsen EN (2002) Highly enantioselective inverse-electron-demand hetero-Diels−Alder reactions of α,β-unsaturated aldehydes. Angew Chem Int Ed 41:3059–3061CrossRefGoogle Scholar
  76. Georgiadis MP, Albizati KF, Georgiadis TM (1992) Oxidative rearrangement of furylcarbinols to 6-hydroxy-2H-pyran-3(6H).-ones, a useful synthon for the preparation of a variety of heterocyclic compounds. A review. Org Prep Proced Int 24:95–118CrossRefGoogle Scholar
  77. Gerard B, Marie J-C, Pandya BA et al (2011) Large-scale synthesis of all stereoisomers of a 2,3-unsaturated C-glycoside scaffold. J Org Chem 76:1898–1901PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gewali MB, Tezuka Y, Banskota AH et al (1999) Epicalyxin F and calyxin I: two novel antiproliferative diarylheptanoids from the seeds of Alpinia blepharocalyx. Org Lett 1:1733–1736PubMedCrossRefPubMedCentralGoogle Scholar
  79. Ghalambor MA, Heath EC (1966) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. IV. Purification and properties of cytidine monophosphate 3-deoxy-d-manno-octulosonate synthetase. J Biol Chem 241:3216–3221PubMedPubMedCentralGoogle Scholar
  80. Ghalambor MA, Levine EM, Heath EC (1966) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. III. The isolation and characterization of 3-deoxyoctulosonic acid. J Biol Chem 241:3207–3215PubMedPubMedCentralGoogle Scholar
  81. Ghogare GA, Greer A (2016) Using singlet oxygen to synthesize natural products and drugs. Chem Rev 116:9994–10034PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ghosh AK, Brindisi M (2016) Achmatowicz reaction and its application in the syntheses of bioactive molecules. RSC Adv 6:111564–111598PubMedCrossRefPubMedCentralGoogle Scholar
  83. Gijsen HJM, Qiao L, Fitz W et al (1996) Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem Rev 96:443–473PubMedCrossRefPubMedCentralGoogle Scholar
  84. Goel A, Ram VJ (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 65:7865–7913CrossRefGoogle Scholar
  85. Gomes NGM, Dasari R, Chandra S et al (2016) Marine invertebrate metabolites with anticancer activities: solutions to the “supply problem”. Mar Drugs 14:98CrossRefPubMedCentralGoogle Scholar
  86. Gomez AM, Lobo F, Uriel C et al (2013) Recent developments in the Ferrier rearrangement. Eur J Org Chem 2013:7221–7262CrossRefGoogle Scholar
  87. Gomez AM, Lobo F, Miranda S et al (2015) A survey of recent synthetic applications of 2,3-dideoxy-hex-2-enopyranosides. Molecules 20:8357–8394PubMedCrossRefPubMedCentralGoogle Scholar
  88. Grela K (2014) Olefin metathesis: theory and practice. Wiley, HobokenCrossRefGoogle Scholar
  89. Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7:281–294PubMedCrossRefPubMedCentralGoogle Scholar
  90. Grubbs RH, Wenzel AG, O’Leary DJ et al (2014) Handbook of metathesis. Wiley-VCH, WeinheimGoogle Scholar
  91. Grynkiewicz G, BeMiller JN (1982) Use of unsaturated sugars as alkylating agents. Addition of enol esters and ethers to glycals. J Carbohydr Chem 1:121–127CrossRefGoogle Scholar
  92. Grynkiewicz G, Zamojski A (1980) Electrophilic substitution of aromatic compounds by unsaturated sugar derivatives. Z Naturforsch 35b:1024–1027CrossRefGoogle Scholar
  93. Grynkiewicz G, Szeja W, Krzeczyński P et al (2014) Hexenoses in design of glycoconjugates – from chemistry to function. Chem Biol Interface 4:301–320Google Scholar
  94. Guidotti BB, Coelho F (2015) Sequential Morita-Baylis-Hillman/Achmatowich reactions: an expeditious access to pyran 3(6H).-ones with a unique substitution pattern. Tetrahedron Lett 56:6356–6359CrossRefGoogle Scholar
  95. Guo H, O’Doherty GA (2008) De novo asymmetric syntheses of D-, L- and 8-epi-D-swainsonine. Tetrahedron 64:304–313PubMedCrossRefPubMedCentralGoogle Scholar
  96. Guy D, Joly GD, Jacobsen EN (2002) Catalyst-controlled diastereoselective hetero-Diels-Alder reactions. Org Lett 4:1795–1798CrossRefGoogle Scholar
  97. Hale KJ, Manaviazan S (2010) New approaches to the total synthesis of the bryostatin antitumor macrolides. Chem Asian J 5:704–754PubMedCrossRefPubMedCentralGoogle Scholar
  98. Hall DG, Lachance H, Denmark SE (2012) Allylboration of carbonyl compounds. Org React 73:1–596Google Scholar
  99. Hall DG, Rybak T, Verdelet T (2016) Multicomponent hetero-[4 + 2] cycloaddition/allylboration reaction: from natural product synthesis to drug discovery. Acc Chem Res 49:2489–2500PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hanessian S (1993) Reflections on the total synthesis of natural products: art, craft, logic, and the Chiron approach. Pure Appl Chem 65:1189–1204CrossRefGoogle Scholar
  101. Hargaden GC, Guiry PJ (2007) The development of the asymmetric Nozaki-Hiyama-Kishi reaction. Adv Synth Catal 349:2407–2424CrossRefGoogle Scholar
  102. Harris JM, Li M, Scott JG et al (2004) Achmatowicz approach to 5,6-dihydro-2H-pyran-2-one containing natural products. In: Harmata M (ed) Strategies and tactics in organic synthesis, vol 5. Elsevier, Amsterdam, pp 221–253Google Scholar
  103. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901PubMedCrossRefPubMedCentralGoogle Scholar
  104. Hasebe T, Hoshino Y, Ishizuka H et al (2013) Commercial manufacture of Halaven®: chemoselective transformations en route to structurally complex macrocyclic ketones. Synlett 24:333–337CrossRefGoogle Scholar
  105. Hauser FM, Ellenberger SR (1986) Syntheses of 2,3,6,-trideoxy-3-amino and 2,3,6,-trideoxy-3-nitrohexoses. Chem Rev 86:35–67CrossRefGoogle Scholar
  106. Hekking KFW, Moelands MAH, Van Delft FL et al (2006) An in-depth study on ring-closing metathesis of carbohydrate-derived α-alkoxyacrylates: efficient syntheses of DAH, KDO, and 2-Deoxy-β-KDO. J Org Chem 71:6444–6450PubMedCrossRefPubMedCentralGoogle Scholar
  107. Henschke JP, Lin C-W, Wu P-Y et al (2015a) β-Selective C-arylation of diisobutylaluminum hydride modified 1,6-anhydroglucose: synthesis of canagliflozin without recourse to conventional protecting groups. J Org Chem 80:5189–5195PubMedCrossRefPubMedCentralGoogle Scholar
  108. Henschke JP, Wu PY, Lin CW et al (2015b) β-Selective C-arylation of silyl protected 1,6-anhydroglucose with arylalanes: the synthesis of SGLT2 inhibitors. J Org Chem 80:2295–2309PubMedCrossRefPubMedCentralGoogle Scholar
  109. Hershberger C, Binkley SS (1968) Chemistry and metabolism of 3-deoxy-d-mannooctulosonic acid: I. Stereochemical determination. J Biol Chem 243:1578–1584PubMedPubMedCentralGoogle Scholar
  110. Hershberger C, Davis M, Binkley SB (1968) Chemistry and metabolism of 3-deoxy-D-mannooctulosonic acid. II. Practical synthesis and stability. J Biol Chem 243:1585–1608PubMedPubMedCentralGoogle Scholar
  111. Higman CS, Lummiss JAM, Fogg DE (2016) Olefin metathesis at the dawn of implementation in pharmaceutical and specialty-chemicals manufacturing. Angew Chem Int Ed 55:3552–3565CrossRefGoogle Scholar
  112. Hirata Y, Uemura D (1986) Halichondrins – antitumor polyether macrolides from a marine sponge. Pure Appl Chem 58:701–710CrossRefGoogle Scholar
  113. Hoang KLM, Leng W-L, Tan Y-J et al (2017) Stereoselective C-glycosylation from glycal scaffolds. In: Bennett CS (ed) Selective glycosylations: synthetic methods and catalysts. Wiley-VCH, Weinheim, pp 137–153Google Scholar
  114. Hoffmann HMR, Rabe J (1985) Synthesis and biological activity of α-methylene gamma-butyrolactones. Angew Chem Int Ed Engl 24:94–104CrossRefGoogle Scholar
  115. Honda T (2012) Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions. Chem Pharm Bull 60:687–705PubMedCrossRefPubMedCentralGoogle Scholar
  116. Hong BC, Kotame P, Tsai CW et al (2010) Enantioselective total synthesis of (+).-Conicol via cascade three-component organocatalysis. Org Lett 12:776–779PubMedCrossRefPubMedCentralGoogle Scholar
  117. Hoveyda AH (2014) Evolution of catalytic stereoselective olefin metathesis: from ancillary transformation to purveyor of stereochemical identity. J Org Chem 79:4763–4792PubMedCrossRefPubMedCentralGoogle Scholar
  118. Hu YJ, Huang XD, Yao ZI (1998) Formal synthesis of 3-deoxy-d-manno-2-octulosonic acid (KDO). via a highly double-stereoselective hetero Diels−Alder reaction directed by a (salen)CoII catalyst and chiral diene. J Org Chem 63:2456–2461PubMedCrossRefPubMedCentralGoogle Scholar
  119. Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery, from Xylocain to Crixivan. Curr Med Chem 10:51–80PubMedCrossRefPubMedCentralGoogle Scholar
  120. Inanaga J, Hirata K, Saeki H et al (1979) A rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bull Chem Soc Jpn 52:1989–1993CrossRefGoogle Scholar
  121. Iyer K, Rainier JD (2007) Olefinic ester and diene ring-closing metathesis using a reduced titanium alkylidene. J Am Chem Soc 129:12604–12605PubMedCrossRefPubMedCentralGoogle Scholar
  122. Jackson KL, Henderson JA, Phillips AJ (2009) The halichondrins and E7389. Chem Rev 109:3044–3079PubMedCrossRefPubMedCentralGoogle Scholar
  123. Jakubec P, Berkes D, Siska R et al (2006) Crystallization induced asymmetric transformation (CIAT) in the synthesis of furyloalanines and furylcarbinols. Tetrahedron Asymmetry 17:1629–1637CrossRefGoogle Scholar
  124. Jensen KI, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA (2012) The diarylprolinol silyl ether system: a general organocatalyst. Acc Chem Res 45:248–264PubMedCrossRefPubMedCentralGoogle Scholar
  125. Jiang X, Wang R (2013) Recent developments in catalytic asymmetric inverse-electron-demand Diels−Alder reaction. Chem Rev 113:5515–5546PubMedCrossRefPubMedCentralGoogle Scholar
  126. Johansson Seechurn CCC, Litching MO et al (2012) Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew Chem Int Ed 51:5062–5085CrossRefGoogle Scholar
  127. Jones RA, Krische MJ (2009) Asymmetric total synthesis of the iridoid β-glucoside (+).-geniposide via phosphine organocatalysis. Org Lett 11:1849–1851PubMedCrossRefPubMedCentralGoogle Scholar
  128. Kageyama M, Tamura T, Nantz MH, Roberts JC, Somfai P, Whritenour DC, Masamune S (1990) Synthesis of bryostatin 7. J Am Chem Soc 112:7407–7408CrossRefGoogle Scholar
  129. Kazuhiro IK, Ryo C, Yanagita RC (2014) Synthesis and biological activities of the simplified analogs of natural PKC ligands, bryostatin-1 and aplysiatoxin. Chem Rec 14:251–267CrossRefGoogle Scholar
  130. Keck GE, Truong AP (2005) Synthetic studies on the bryostatins: preparation of a truncated BC-ring intermediate by pyran annulation. Org Lett 7:2149–2152PubMedCrossRefPubMedCentralGoogle Scholar
  131. Keck GE, Welch DS, Vivian PK (2006) Synthetic studies toward the bryostatins: a substrate-controlled approach to the A-ring. Org Lett 8:3667–3670PubMedCrossRefPubMedCentralGoogle Scholar
  132. Keck GE, Kraft MB, Truong AP et al (2008) Convergent assembly of highly potent analogues of bryostatin 1 via pyran annulation: bryostatin look-alikes that mimic phorbol ester function. J Am Chem Soc 130:6660–6661PubMedCrossRefPubMedCentralGoogle Scholar
  133. Keck GE, Poudel YB, Cummins TJ et al (2011) Total synthesis of bryostatin 1. J Am Chem Soc 133:744–747PubMedCrossRefPubMedCentralGoogle Scholar
  134. Keitz BK, Endo K, Patel PR et al (2012) Improved ruthenium catalysts for Z-selective olefin metathesis. J Am Chem Soc 134:693–699PubMedCrossRefPubMedCentralGoogle Scholar
  135. Khan SH, O’Neill RA (1996) Modern methods in carbohydrate synthesis. Harwood Academic, AmsterdamGoogle Scholar
  136. Khan RKM, Torker S, Hoveyda AH (2014) Reactivity and selectivity differences between catecholate and catechothiolate Ru complexes. Implications regarding design of stereoselective olefin metathesis catalysts. J Am Chem Soc 136:14337–14340PubMedCrossRefPubMedCentralGoogle Scholar
  137. Kikuchi T, Takagi J, Isou H et al (2008) Vinylic C–H borylation of cyclic vinyl ethers with bis(pinacolato) diboron catalyzed by an Iridium(I)-dtbpy complex. Chem Asian J 3:2082–2090PubMedCrossRefGoogle Scholar
  138. Knueppel D, Yang J, Cheng B et al (2015) Total synthesis of the aglycone of IB-00208. Tetrahedron 71:5741–5757PubMedCrossRefPubMedCentralGoogle Scholar
  139. Kochetkov NK, Dmitriev BA, Backinowsky LV (1967) A new approach to the synthesis of higher 3-deoxyglyculosonic acids. Carbohydr Res 5:399–405CrossRefGoogle Scholar
  140. Koskinen AMP (2012) Asymmetric synthesis of natural products, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  141. Křen V (2008) Glycoside vs aglycon: the role of glycosidic residue in biological activity. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience: chemistry and chemical biology III. Springer, Berlin, pp 2589–2644CrossRefGoogle Scholar
  142. Křen V (2011) Chemical biology and biomedicine of glycosylated natural compounds. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience: chemistry and chemical biology I–III. Springer, Berlin, pp 2471–2529Google Scholar
  143. Kühne ME, Benson BW (1965) The structures of the spiramycins and magnamycin. J Am Chem Soc 87:4660–4662CrossRefGoogle Scholar
  144. Kumagai N, Shibasaki M (2011) Recent advances in direct catalytic asymmetric transformations under proton-transfer conditions. Angew Chem Int Ed 50:4760–4772CrossRefGoogle Scholar
  145. Kumar D, Sharma P, Singh H et al (2017) The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Adv 7:36977–36999CrossRefGoogle Scholar
  146. Kunz H (2002) Emil Fischer – unequalled classicist, master of organic chemistry research, and inspired trailblazer of biological chemistry. Angew Chem Int Ed 41:4439–4451CrossRefGoogle Scholar
  147. Lee K, Kim H, Hong JA (2011) Stereoselective formal synthesis of leucascandrolide A. Org Lett 13:2722–2725PubMedCrossRefPubMedCentralGoogle Scholar
  148. Lei M, Gao L, Yang J-S (2009) Microwave-assisted palladium catalyzed cross-coupling reactions between pyranoid glycals and aryl bromides. Synthesis of 2’-deoxy C-aryl-β-D-glycopyranosides. Tetrahedron Lett 50:5135–5138CrossRefGoogle Scholar
  149. Leidy MR, Hoffman JM, Pongdee R (2013) Preparation of C-arylglycals via Suzuki-Miyaura cross coupling of dihydropyranylphosphates. Tetrahedron Lett 54:6889–6891PubMedCrossRefPubMedCentralGoogle Scholar
  150. Lemaire S, Schils D (2015) Development of efficient routes to access C-glycosides as SGLT-2 inhibitors for the treatment of type 2 diabetes. In: Časar Z, (ed), Synthesis of heterocycles in contemporary medicinal chemistry. Springer, Top Heterocycl Chem 44:29–50Google Scholar
  151. Lemaire S, Houpis IN, Xiao T et al (2012) Stereoselective C-glycosylation reactions with arylzinc reagents. Org Lett 14:1480–1483PubMedCrossRefPubMedCentralGoogle Scholar
  152. Levy DE (2006) Strategies towards C-glycosides. In: Levy DE, Fügedi P (eds) The organic chemistry of sugars. CRC Taylor & Francis, Boca Raton, pp 269–348Google Scholar
  153. Levy DE, Fügedi P (2006) The organic chemistry of sugars. CRC Taylor & Francis, Boca RatonGoogle Scholar
  154. Levy DE, Tang C (1995) The chemistry of C-glycosides. Pergamon, OxfordGoogle Scholar
  155. Li Z, Tong R (2016) A catalytic environment-friendly protocol for Achmatowicz rearrangement. J Org Chem 81:4847–4855PubMedCrossRefPubMedCentralGoogle Scholar
  156. Li Z, Tong R (2017) Asymmetric total syntheses of (-)-hedycoropyrans A and B. J Org Chem 82:1127–1135PubMedCrossRefPubMedCentralGoogle Scholar
  157. Li X, Zhu J (2016) Glycosylation via transition-metal catalysis: challenges and opportunities. Eur J Org Chem 2016:4724–4767CrossRefGoogle Scholar
  158. Li Z, Leung TF, Tong R (2014) Total syntheses of (±)-musellarins A-C. Chem Commun 50:10990–10993CrossRefGoogle Scholar
  159. Li Z, Ip FCP, Ip NY, Tong R (2015) Highly trans-selective arylation of Achmatowicz rearrangement products by reductive γ-deoxygenation and Heck-Matsuda reaction: asymmetric total synthesis of (-)-musellarins A-C and their analogs. Chem Eur J 21:11152–11157PubMedCrossRefGoogle Scholar
  160. Li Y, Hu Y, Zhang S, Sun J et al (2016) Copper-catalyzed enantioselective hetero-Diels−Alder reaction of Danishewsky’s diene with glyoxals. J Org Chem 81:2993–2999PubMedCrossRefGoogle Scholar
  161. Li TZ, Geng C-A, Yin XJ et al (2017) Catalytic asymmetric total synthesis of (+)- and (−)-paeoveitol via a hetero-Diels−Alder reaction. Org Lett 19:429–431PubMedCrossRefGoogle Scholar
  162. Lin L, Fan Q, Qin B et al (2006) Highly enantio- and diastereoselective Brassard type hetero-Diels-Alder approach to 5-methyl-containing α,β-unsaturated δ-lactones. J Org Chem 71:4141–4146PubMedCrossRefGoogle Scholar
  163. Lin L, Chen Z, Yang X et al (2008) Efficient enantioselective hetero-Diels-Alder reaction of Brassard’s diene with aliphatic aldehydes: a one-step synthesis of (R)-(+)-kavain and (S)-(+)-dihydrokavain. Org Lett 10:1311–1314PubMedCrossRefGoogle Scholar
  164. Lin L, Kuang Y, Liu X (2011) Indium(III)-catalyzed asymmetric hetero-Diels Alder reaction of Brassard-type diene with aliphatic aldehydes. Org Lett 13:3868–3871PubMedCrossRefGoogle Scholar
  165. List B (2010) Asymmetric organocatalysis, Topics in current chemistry. Springer, HeidelbergGoogle Scholar
  166. Lu Y, Woo SK, Krische MJ (2011) Total synthesis of bryostatin 7 via C-C bond-forming hydrogenation. J Am Chem Soc 133:13876–13879PubMedCrossRefPubMedCentralGoogle Scholar
  167. Mahajan PS, Humne VT, Mhaske SB (2017) Achmatowicz reaction: a versatile tool in bioactive natural products synthesis. Curr Org Chem 21:503–545CrossRefGoogle Scholar
  168. Maier ME (2015) Design and synthesis of analogues of natural products. Org Biomol Chem 13:5302–5343PubMedCrossRefPubMedCentralGoogle Scholar
  169. Majer J, Kwiatkowski P, Jurczak J (2008) Highly enantioselective synthesis of 2-furanyl-hydroxyacetates from furans via the Friedel-Crafts reaction. Org Lett 10:2955–2958PubMedCrossRefPubMedCentralGoogle Scholar
  170. Manaviazar S, Hale KJ (2011) Total synthesis of bryostatin 1: a short route. Angew Chem Int Ed 50:8786–8789CrossRefGoogle Scholar
  171. Marion O, Gao X, Marcus S, Hall DG (2009) Synthesis and preliminary antibacterial evaluation of simplified thiomarinol analogs. Bioorg Med Chem 17:1006–1017PubMedCrossRefGoogle Scholar
  172. Marmsäter FP, West FG (2002) New efficient iterative approaches to polycyclic ethers. Chem Eur J 8:4346–4353PubMedCrossRefGoogle Scholar
  173. Martin SF (2017) Natural products and their mimics as targets of opportunity for discovery. J Org Chem 82:10757–10794PubMedCrossRefPubMedCentralGoogle Scholar
  174. Martin SF, Zinke PW (1991) The furan approach to oxygenated natural products. Total synthesis of (+).-KDO. J Org Chem 56:6600–6601CrossRefGoogle Scholar
  175. Martín-Acosta P, Feresin G, Tapia A et al (2016) Microwave-assisted organocatalytic intramolecular Knoevenagel/hetero Diels−Alder reaction with O-(arylpropynyloxy).-salicylaldehydes: synthesis of polycyclic embelin derivatives. J Org Chem 81:9738–9756PubMedCrossRefGoogle Scholar
  176. Mascitti V, Thuma BA, Smith AC et al (2013) On the importance of synthetic organic chemistry in drug discovery: reflections on the discovery of antidiabetic agent ertugliflozin. Med Chem Comm 4:101–111CrossRefGoogle Scholar
  177. McNicholas PA, Batley M, Redmond JW (1986) Synthesis of methyl pyranosides and furanosides of 3-deoxy-d-manno-oct-2-ulosonic acid (KDO). by acid-catalysed solvolysis of the acetylated derivatives. Carbohydr Res 146:219–231PubMedCrossRefGoogle Scholar
  178. Merino P (2015) Oxidative cleavage of furans. Org React 87:1–256Google Scholar
  179. Merino P, Merino P, Tejero T et al (2007) Furan oxidations in organic synthesis: recent advances and applications. Curr Org Chem 11:1076–1091CrossRefGoogle Scholar
  180. Michael A (1879) On the synthesis of helicon and phenolglucoside. Am Chem J 1:305–312CrossRefGoogle Scholar
  181. Mishra S, Singh AS, Mishra N et al (2016) Carbohydrate-based antidiabetic agents from nature. In: Brachmachari G (ed) Discovery and development of antidiabetic agents from natural products: natural products drug discovery. Elsevier, Amsterdam, pp 147–184Google Scholar
  182. Mizutani H, Watanabe M, Honda T (2002) Enantioselective total synthesis of δ -lactonic marine natural products, (1)-tanikolide and (2)-malyngolide, via RCM reaction. Tetrahedron 58:8929–8936CrossRefGoogle Scholar
  183. Momiyama N, Tabuse H, Terada M (2009) Chiral phosphoric acid-governed anti-diastereoselective and enantioselective hetero-Diels-Alder reaction of Glyoxylate. J Am Chem Soc 131:12882–12883PubMedCrossRefPubMedCentralGoogle Scholar
  184. Montagnon T, Tofi M, Vassilikogiannakis G (2008) Using singlet oxygen to synthesize polyoxygenated natural products from furans. Acc Chem Res 41:1001–1011PubMedCrossRefPubMedCentralGoogle Scholar
  185. Mori K (2011) Bioactive natural products and chirality. Chirality 23:449–462PubMedCrossRefPubMedCentralGoogle Scholar
  186. Munson RS, Rasmussen NS, Osborn MJ (1978) Biosynthesis of lipid A. Enzymatic incorporation of 3-deoxy-d-mannooctulosonate into a precursor of lipid A in Salmonella typhimurium. J Biol Chem 252:1503–1511Google Scholar
  187. Mydock LK, Demchenko AV (2010) Mechanism of chemical glycosylation: from early studies to recent discoveries. Org Biomol Chem 8:497–510PubMedCrossRefPubMedCentralGoogle Scholar
  188. Naik SR, Niture NT, Ansari AA et al (2013) Anti-diabetic activity of embelin: involvement of cellular inflammatory mediators, oxidative stress and other biomarkers. Phytomedicine 20:797–804PubMedCrossRefPubMedCentralGoogle Scholar
  189. Neumiller JJ, White JR Jr, Campbell RK (2010) Sodium-glucose co-transport inhibitors progress and therapeutic potential in type 2 diabetes mellitus. Drugs 70:377–385PubMedCrossRefPubMedCentralGoogle Scholar
  190. Nichols AL, Zhang P, Martin SF (2012) Concise approach to 1,4-dioxygenated xanthones via novel application of the Moore rearrangement. Tetrahedron 68:7591–7597PubMedCrossRefPubMedCentralGoogle Scholar
  191. Nicolaou KC, Mitchell HJ (2001) Adventures in carbohydrates chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew Chem Int Ed 40:1576–1624CrossRefGoogle Scholar
  192. Nicolaou KC, Hale CRH, Nilewski C et al (2012) Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 41:5185–5238PubMedCrossRefPubMedCentralGoogle Scholar
  193. Nishikawa T, Adachi M, Isobe M (2008) C-Glycosylation. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience – chemistry and chemical biology. Springer, New York, pp 755–811Google Scholar
  194. Nishiwaki N (2014) Methods and applications of cycloaddition reactions in organic syntheses. Wiley, HobokenCrossRefGoogle Scholar
  195. Nising CF, Bräse S (2012) Recent developments in the field of oxa-Michael reactions. Chem Soc Rev 41:988–999PubMedCrossRefPubMedCentralGoogle Scholar
  196. Noutsias D, Kouridaki A, Vassilikogiannakis G (2011) Scope and limitations of the photooxidations of 2-(α-Hydroxyalkyl). furans: synthesis of 2-hydroxy-exo-brevicomin. Org Lett 13:1166–1169PubMedCrossRefPubMedCentralGoogle Scholar
  197. Noyori R (2002) Asymmetric catalysis: science and opportunities. Angew Chem Int Ed 41:2008–2022CrossRefGoogle Scholar
  198. Núňez MG, García P, Moro RF et al (2010) Asymmetric organocatalytic synthesis of six-membered oxygenated heterocycles. Tetrahedron 66:2089–2109CrossRefGoogle Scholar
  199. Ohmori K, Ogawa Y, Obitsu T et al (2000) Total synthesis of bryostatin 3. Angew Chem Int Ed 39:2290–2294CrossRefGoogle Scholar
  200. Ohtake Y, Sato T, Kobayashi T et al (2012) Discovery of tofogliflozin, a novel C-arylglucoside with an O- spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 55:7828–7840PubMedCrossRefPubMedCentralGoogle Scholar
  201. Ohtake Y, Emura T, Nishimoto M et al (2016) Development of a scalable synthesis of tofogliflozin. J Org Chem 81:2148–2153PubMedCrossRefPubMedCentralGoogle Scholar
  202. Pathania S, Kashyap N, Singh V et al (2016) Development and recent advancement of SGLT2 inhibitors for the treatment regime of T2DM. J Biomed 1(4):e10052CrossRefGoogle Scholar
  203. Pellissieri H (2011) Recent developments in the [5+ 2] cycloaddition. Adv Synth Catal 353:189–218CrossRefGoogle Scholar
  204. Perry MA, Rychnovsky SD, Sizemore N (2014) Synthesis of saturated tetrahydropyrans. Springer, BerlinCrossRefGoogle Scholar
  205. Pettit GR, Herald CL, Doubek DL et al (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848CrossRefGoogle Scholar
  206. Pouwer RH, Richard JA, Tseng CC et al (2012) Chemical synthesis of the englerins. Chem Asian J 7:22–35PubMedCrossRefPubMedCentralGoogle Scholar
  207. Rainier JD, Cox JM (2000) Aluminum- and boron-mediated C-glycoside synthesis from 1,2-anhydroglycosides. Org Lett 2:2707–2709PubMedCrossRefPubMedCentralGoogle Scholar
  208. Rodriguez JC, Fernandez-Puentes JL, Baz JP et al (2003) IB-00208, a new cytotoxic polycyclic xanthone produdced by a marine-derived actinomadura. J Antibiot 56:318–321PubMedCrossRefPubMedCentralGoogle Scholar
  209. Rousseau C, Martin OR (2003) Stereodirected synthesis of aryl α-C-glycosides from 2-O-arylsilyl-glucopyranosides. Org Lett 5:3763–3766PubMedCrossRefPubMedCentralGoogle Scholar
  210. Rowe A, Narlawar R, Groundwater P et al (2011) Kavalactone pharmacophores for major cellular drug targets. Mini Rev Med Chem 11:79–83PubMedCrossRefPubMedCentralGoogle Scholar
  211. Ruan J, Zheng C, Liu Y et al (2017) Chemical and biological research on herbal medicines rich in xanthones. Molecules 22:1698CrossRefPubMedCentralGoogle Scholar
  212. Rueping M, Sugiono E, Merino E (2008) Asymmetric organocatalysis: an efficient enantioselective access to benzopyranes and chromenes. Chem Eur J 14:6329–6332PubMedCrossRefPubMedCentralGoogle Scholar
  213. Rybak T, Hall DG (2015) Stereoselective and regiodivergent allylic Suzuki-Miyaura cross-coupling of 2-Ethoxydihydropyranyl boronates: synthesis and confirmation of absolute stereochemistry of diospongin B. Org Lett 17:4156–4159PubMedCrossRefPubMedCentralGoogle Scholar
  214. Savard J, Brassard P (1979) Regiospecific syntheses of quinones using vinyl ketene acetals derived from unsaturated esters. Tetrahedron Lett 20:4911–4914CrossRefGoogle Scholar
  215. Schmidt B (2003) An olefin metathesis/double bond isomerization sequence catalyzed by an in situ generated ruthenium hydride species. Eur J Org Chem 2003:816–819CrossRefGoogle Scholar
  216. Schmidt B, Wildemann H (2000) Diastereoselective ring-closing metathesis in the synthesis of dihydropyrans. J Org Chem 65:5817–5822PubMedCrossRefPubMedCentralGoogle Scholar
  217. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421PubMedCrossRefPubMedCentralGoogle Scholar
  218. Schweizer EE, Meeder-Nycz D (1977) 2H- and 4H-1-benzopyrans. In: Ellis GP (ed) The chemistry of heterocyclic compounds; 31; chromenes, chromanones, and chromones. Wiley, New York, pp 11–139Google Scholar
  219. Seletsky BM, Wang Y, Hawkins LD et al (2004) Structurally simplified macrolactone analogues of halichondrin B. Bioorg Med Chem Lett 14:5547–5550PubMedCrossRefPubMedCentralGoogle Scholar
  220. Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40:5266–5281PubMedCrossRefPubMedCentralGoogle Scholar
  221. Shablak A (2013) Eribulin for advanced breast cancer: a drug evaluation. J Breast Cancer 16:12–15PubMedCrossRefPubMedCentralGoogle Scholar
  222. Sharpless KB, Amberg W, Bennani YL et al (1992) The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement. J Org Chem 57:2768–2771CrossRefGoogle Scholar
  223. Shirai R, Ogura H (1989) Improved syntheses of two 3-deoxyald-2-ulosonic acids (KDN, KDO). by condensation of oxalacetic acid with aldoses followed by Ni2+ catalyzed decarboxylation. Tetrahedron Lett 30:2263–2264CrossRefGoogle Scholar
  224. Smith DB, Wang Z, Schreiber SL (1990) The asymmetric epoxidation of divinyl carbinols: theory and applications. Tetrahedron 46:4793–4808CrossRefGoogle Scholar
  225. Smith JA, Wilson L, Azarenko O et al (2010) Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 49:1331–1337PubMedCrossRefPubMedCentralGoogle Scholar
  226. Sturino CF, Wong JCK (1998) The ring-closing metathesis of vinyl ethers with Grubbs’ catalyst for the synthesis of dihydropyrans. Tetrahedron Lett 39:9623–9626CrossRefGoogle Scholar
  227. Sugai T, Shen G-J, Ichikawa Y, Wong C-H (1993) Synthesis of 3-deoxy-D-manno-2-octulosonic acid (KDO) and its analogs based on KDO aldolase-catalyzed reactions. J Am Chem Soc 115:413–421CrossRefGoogle Scholar
  228. Tanaka K, Ohta Y, Fuji K (1993) Differentiation of enantiotopic carbonyl groups by the Horner-Wadsworth-Emmons reaction. Tetrahedron Lett 34:4071–4074CrossRefGoogle Scholar
  229. Thiel D, Doknic D, Deska J (2014) Enzymatic aerobic ring rearrangement of optically active furylcarbinols. Nat Commun 5:5278PubMedCrossRefPubMedCentralGoogle Scholar
  230. Tietze LF (2014) Domino reactions: concepts for efficient organic synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  231. Tietze LF, Düfert A (2012) Modern tools for the synthesis of complex bioactive molecules. Wiley, HobokenGoogle Scholar
  232. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  233. Tietze LF, Böhnke N, Dietz S (2009) Synthesis of the deoxyaminosugar (+).-D-forosamine via a novel domino-Knoevenagel-hetero-Diels-Alder reaction. Org Lett 11:2948–2950PubMedCrossRefPubMedCentralGoogle Scholar
  234. Touré B, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486PubMedCrossRefPubMedCentralGoogle Scholar
  235. Towle MJ, Salvato KA, Budrow J et al (2001) In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61:1013–1021PubMedPubMedCentralGoogle Scholar
  236. Trost BM, Dong G (2010) Total synthesis of bryostatin 16 using a Pd-catalyzed diyne coupling as macrocyclization method and synthesis of C20-epi-bryostatin 7 as a potent anticancer agent. J Am Chem Soc 132:16403–16416PubMedCrossRefPubMedCentralGoogle Scholar
  237. Twelves C, Cortes J, Vahdat LT et al (2010) Phase III trials of eribulin mesylate (E7389) in extensively pretreated patients with locally recurrent or metastatic breast cancer. Clin Breast Cancer 10:160–163PubMedCrossRefPubMedCentralGoogle Scholar
  238. Uemura D, Takahashi K, Yamamoto T et al (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107:4796–4798CrossRefGoogle Scholar
  239. Unger FM (1981) The chemistry and biological significance of 3-deoxy-D-manno-2-octulosonic acid (KDO). Adv Carbohydr Chem Biochem 38:323–388CrossRefGoogle Scholar
  240. Van Putten RJ, Van der Waal JC, de Jong E et al (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597PubMedCrossRefPubMedCentralGoogle Scholar
  241. Vogel P, Robina I (2008) De novo synthesis of monosaccharides. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 861–956Google Scholar
  242. Wang Y, Serradell N, Bolos J et al (2007) Eribulin mesilate. Drugs Future 32:681–698CrossRefGoogle Scholar
  243. Wang H-Y, Yang K, Yin D et al (2015a) Chiral catalyst-directed dynamic kinetic diastereoselective acylation of lactols for de novo synthesis of carbohydrate. Org Lett 17:5272–5275PubMedCrossRefPubMedCentralGoogle Scholar
  244. Wang HY, Yang K, Bennett SR et al (2015b) Iridium-catalyzed dynamic kinetic isomerization: expedient synthesis of carbohydrates from Achmatowicz rearrangement products. Angew Chem 127:8880–8883CrossRefGoogle Scholar
  245. Wang H-Y, Simmons CJ, Zhang Y et al (2017) Chiral catalyst-directed dynamic kinetic diastereoselective acylation of anomeric hydroxyl groups and a controlled reduction of the glycosyl ester products. Org Lett 19:508–511PubMedCrossRefPubMedCentralGoogle Scholar
  246. Washburn WN (2012a) SGLT2 Inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. Royal Society of Chemistry, UK, pp 29−87Google Scholar
  247. Washburn WN (2012b) Sodium glucose Co-transporter 2 (Sglt2). inhibitors: novel antidiabetic agents. Expert Opin Ther Pat 22:483–494PubMedCrossRefPubMedCentralGoogle Scholar
  248. Washburn WN (2014) Case history: Forxiga (dapagliflozin) a potent selective SGLT2 inhibitor for treatment of diabetes. Annu Rep Med Chem 49:363–382Google Scholar
  249. Wender PA, Schrier AJ (2011) Total synthesis of bryostatin 9. J Am Chem Soc 133:9228–9231PubMedCrossRefPubMedCentralGoogle Scholar
  250. Wender PA, Baryza JL, Hilinski MK et al (2007) Beyond natural products: synthetic analogues of bryostatin 1. In: Huang Z (ed) Drug discovery research: new frontiers in the post-genomic era. Wiley, Hoboken, pp 127–162Google Scholar
  251. Wender PA, Loy BA, Schrier AJ (2011) Translating nature’s library: the bryostatins and function-oriented synthesis. Isr J Chem 51:453–472PubMedCrossRefPubMedCentralGoogle Scholar
  252. Wender PA, Ryan V, Quiroz RV et al (2015) Function through synthesis-informed design. Acc Chem Res 48:752–760PubMedCrossRefPubMedCentralGoogle Scholar
  253. Wender PA, Hardman CT, Ho S et al (2017) Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV. Science 358:218–223PubMedCrossRefPubMedCentralGoogle Scholar
  254. Wilson RM, Danishewsky SJ (2006) Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J Org Chem 71:8329–8351PubMedCrossRefPubMedCentralGoogle Scholar
  255. Witczak ZJ, Bielski R (2016) Domino and intramolecular rearrangement reactions as advanced synthetic methods in glycoscience. Wiley, HobokenCrossRefGoogle Scholar
  256. Witczak ZJ, Tatsuta K (2003) Carbohydrate synthons in natural products chemistry; synthesis, functionalization, and applications. ACS, Washington, DCGoogle Scholar
  257. Wu Z, Zhao S, Fash DM et al (2017) Englerins: a comprehensive review. J Nat Prod 80:771–781PubMedCrossRefPubMedCentralGoogle Scholar
  258. Xiang S, Cai S, Zeng J et al (2011) Regio- and stereoselective synthesis of 2-deoxy-C-aryl glycosides via palladium catalyzed decarboxylative reactions. Org Lett 13:4608–4611PubMedCrossRefPubMedCentralGoogle Scholar
  259. Xu DQ, Wang YF, Luo SP et al (2008) A novel enantioselective catalytic tandem oxa-Michael-Henry reaction: One-pot organocatalytic asymmetric synthesis of 3-Nitro-2H-chromenes. Adv Synth Catal 350:2610–2616CrossRefGoogle Scholar
  260. Xu C, Shen X, Hoveyda AH (2017) In situ methylene capping: a general strategy for efficient stereoretentive catalytic olefin metathesis. The concept, methodological implications, and applications to synthesis of biologically active compounds. J Am Chem Soc 139:10919–10928PubMedCrossRefGoogle Scholar
  261. Yang Y, Yu B (2017) Recent advances in the chemical synthesis of C-glycosides. Chem Rev 117:12281–12356PubMedCrossRefPubMedCentralGoogle Scholar
  262. Yang XD, Pan ZX, Li DJ et al (2016) A scalable synthesis of tofogliflozin hydrate. Org Process Res Dev 20:1821–1827CrossRefGoogle Scholar
  263. Yao S, Johannsen M, Audrain H et al (1998) Catalytic asymmetric hetero-Diels-Alder reactions of ketones: chemzymatic reactions. J Am Chem Soc 120:8599–8605CrossRefGoogle Scholar
  264. Ylijoki KEO, Stryker JM (2012) [5+ 2] Cycloaddition reactions in organic and natural product synthesis. Chem Rev 113:2244–2266PubMedCrossRefGoogle Scholar
  265. Yu X, O’Doherty GA (2008) De novo synthesis in carbohydrate chemistry: from furans to monosaccharides and oligosaccharides. Chapter 1. In: Chen X (ed) Chemical glycobiology. ACS, Washington DC, pp 3–28CrossRefGoogle Scholar
  266. Yu B, Sun J, Yang X (2012) Assembly of naturally occurring glycosides, evolved tactics and glycosylation methods. Acc Chem Res 45:1227–1236PubMedCrossRefGoogle Scholar
  267. Yu MJ, Zheng W, Seletsky BM (2013) From micrograms to grams: scale-up synthesis of eribulin mesylate. Nat Prod Rep 30:1158–1164PubMedCrossRefGoogle Scholar
  268. Zamojski A, Banaszek A, Grynkiewicz G (1982) The synthesis of sugars from non-carbohydrate substrates. Adv Carbohydr Chem Biochem 40:1–129CrossRefGoogle Scholar
  269. Zhao B, Loh TP (2013) Asymmetric hetero-Diels_Alder reaction of Danishewsky’s dienes with α-carbonyl esters catalyzed by an Indium(III).-PyBox complex. Org Lett 15:2914–2917PubMedCrossRefPubMedCentralGoogle Scholar
  270. Zheng W, Seletsky BM, Palme MH et al (2004) Macrocyclic ketone analogues of halichondrin B. Bioorg Med Chem Lett 14:5551–5554PubMedCrossRefPubMedCentralGoogle Scholar
  271. Zhou W, Ni C, Chen J et al (2017) Enantioselective synthesis of 4H-Pyran via amine-catalyzed formal (3 + 3) annulation of δ-acetoxy allenoate. Org Lett 19:1890–1893PubMedCrossRefPubMedCentralGoogle Scholar
  272. Zhu R, Schmidt RR (2009) New principles for glycoside-bond formation. Angew Chem Int Ed 48:1900–1934CrossRefGoogle Scholar
  273. Zhu J, Wang Q, Wang M (2015) Multicomponent reactions in organic synthesis. Wiley-VCH & Co. KGaA, WeinheimGoogle Scholar
  274. Zhu F, Rourke MJ, Yang T et al (2016) Highly stereospecific cross-coupling reactions of anomeric stannates for the synthesis of C-aryl glycosides. J Am Chem Soc 138:12049–12052PubMedCrossRefPubMedCentralGoogle Scholar
  275. Zhu F, Yang T, Walczak MA (2017) Glycosyl Stille cross-coupling with anomeric nucleophiles – a general solution to a long standing problem of stereocontrolled synthesis of C-glycosides. Synlett 28:1510–1516CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of ChemistrySilesian University of TechnologyGliwicePoland
  2. 2.Pharmaceutical Research InstituteWarszawaPoland

Personalised recommendations