Advertisement

Current Approaches to the Isolation and Structural Elucidation of Active Compounds from Natural Products

  • Alice L. Perez
Chapter

Abstract

The essence of medicinal plants, either as pure compounds or as standardized extracts, provides unlimited opportunities for new drug leads because of the unmatched availability of chemical diversity. Due to an increasing demand for chemical diversity in screening programs, seeking therapeutic drugs from natural products, the isolation of compounds from edible plants has grown. Botanicals and herbal preparations for medicinal usage contain various types of bioactive compounds. The focus of this chapter is on revised current analytical methodologies, which include the extraction, isolation, and identification of bioactive principles in natural products. Chromatographic techniques such as LC and spectroscopic methods like NMR and MS will be discussed.

Keywords

Natural products Extraction Structural elucidation Chromatography NMR MS 

References

  1. Allard P-M, Genta-Jouve G, Wolfender JL (2017) Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr Opin Chem Biol 36:40–49CrossRefPubMedGoogle Scholar
  2. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887CrossRefPubMedGoogle Scholar
  3. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740CrossRefPubMedGoogle Scholar
  4. Bisson J, McAlpine JB, Friesen JB, Chen S.-N, Graham J, Pauli GF (2016) Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery? J Med Chem 59:1671–1690CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bleicher KH, Böhm H-J, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378CrossRefPubMedGoogle Scholar
  6. Boudreau PD, Byrum T, Liu WT, Dorrestein PC, Gerwick WH (2012) Viequeamide A, a cytotoxic member of the kulolide superfamily of cyclic depsipeptides from a marine button cyanobacterium. J Nat Prod 75:1560–1570CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G (2014) Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal 87:218–228CrossRefGoogle Scholar
  8. Bucar F, Wube A, Schmid M (2013) Natural product isolation-how to get from biological material to pure compounds. Nat Prod Rep 30:525–545CrossRefPubMedGoogle Scholar
  9. Buenz EJ, Verpoorte R, Bauer BA (2018) The ethnopharmacologic contribution to bioprospecting natural products. Annu Rev Pharmacol Toxicol 58:509–530CrossRefPubMedGoogle Scholar
  10. Capuzzi SJ et al (2017) Phantom PAINS: problems with the utility of alerts for Pan-Assay INterference CompoundS. J Chem Inf Model 57:417–427CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carnevale Neto F, Pilon AC, Selegato DM, Freire RT, Gu H, Raftery D, Lopes NP, Castro-Gamboa I (2016) Dereplication of natural products using GC-TOF mass spectrometry: improved metabolite identification by spectral deconvolution ratio analysis. Front Mol Biosci 3:59.  https://doi.org/10.3389/fmolb.2016.00059CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carter GT (2017) Natural products in drug discovery. In: Strømgaard K, Krogsaard-Larson P, Madsen U (eds) Textbook of drug design and discovery, 5th edn. CRC Press, chapter 7, Boca RatonGoogle Scholar
  13. Chen Y, de Bruyn Kops C, Kirchmair J (2017) Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model 57:2099–2111CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ciesla L, Moaddel R (2016) Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat Prod Rep 33:1131–1145CrossRefPubMedGoogle Scholar
  15. Corey EJ (1999) Editorial review for comprehensive natural products chemistry. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry. Elsevier, Amsterdam/New YorkGoogle Scholar
  16. da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics. Proc Natl Sci Acad 112(41):12549–12550CrossRefGoogle Scholar
  17. DeHaven CD, Evans AM, Dai H, Lawton KA (2012) Software techniques for enabling high-throughput analysis of metabolomic datasets. In: Roshner U (ed) Metabolomics. Intech. isbn:978-953-51-0046-1. Available from http://www.intechopen.com/books/metabolomics/software-techniques-for-enabling-high-throughput-analysis-on-metabolomic-datasets. Chapter 7, 167–92
  18. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2:303–336Google Scholar
  19. Dias DA, Jones OAH, Beale DJ, Boughton BA, Benheim D, Kouremenos KA, Wolfender J-L, Wishart DS (2016) Current and future perspectives on the structural identification of small molecules in biological systems. Meta 6(4):46.  https://doi.org/10.3390/metabo6040046CrossRefGoogle Scholar
  20. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc Natl Sci Acad 112(41):12580–12585CrossRefGoogle Scholar
  21. Ganzera M, Sturm S (2018) Recent advances on HPLC/MS in medicinal plant analysis – an update covering 2011–2016. J Pharm Biomed Anal 147:211–233CrossRefPubMedGoogle Scholar
  22. Gaudencio SP, Pereira F (2015) Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 32:779–810CrossRefPubMedGoogle Scholar
  23. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gomes NGM, Pereira DM, Valentão P, Andrade PB (2018) Hybrid MS/NMR methods on the prioritization of natural products: applications in drug discovery. J Pharm Biomed Anal 147:234–249CrossRefPubMedGoogle Scholar
  25. Hanka LJ, Kuentzel SL, Martin DG, Wiley PF, Neil GL (1978) Detection and assay of antitumor antibiotics. In: Carter SK, Umezawa H, Douros J, Sakurai Y (eds) Antitumor antibiotics. Recent results in cancer research/Fortschritte der Krebsforschung/Progrès dans les recherches sur le cancer, vol 63. Springer, Berlin/HeidelbergGoogle Scholar
  26. Haug K, Salek RM, Steinbeck C (2017) Global open data management in metabolomics. Curr Opin Chem Biol 36:58–63CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ho TT, Tran QTN, Chai CLL (2018) The polypharmacology of natural products. Future Med Chem 10:1361–1368CrossRefPubMedGoogle Scholar
  28. Hovarth P et al (2016) Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 15:751–769CrossRefGoogle Scholar
  29. Hubert J, Nuzillard J-M, Renault J-H (2017) Dereplication strategies in natural product research: how many tools and methodologies behind the same concept? Phytochem Rev 16:55–95CrossRefGoogle Scholar
  30. Jasial S, Bajorath J (2017) Dark chemical matter in public screening assays and derivation of target hypotheses. Med Chem Commun 8:2100–2104CrossRefGoogle Scholar
  31. Kim HK, Verpoorte R (2009) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13CrossRefGoogle Scholar
  32. Koehn F (2008) High impact technologies for natural products screening. In: Petersen F, Amstutz R (eds) Progress in drug research, vol 65; Natural products as drugs, vol I. Birkhäuser Verlag AG, Basel, pp 177–210Google Scholar
  33. Kremb S, Voolstra CR (2017) High-resolution phenotypic profiling of natural products- induced effects on the single-cell level. Sci Rep 7:44472CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kruk J, Doskocz M, Jodłowska E, Zacharzewska A, Łakomiec J, Czaja K, Kujawski J (2017) NMR techniques in metabolomic studies: a quick overview on examples of utilization. Appl Magn Reson 48:1–21CrossRefPubMedGoogle Scholar
  35. Kurita KL, Glassey E, Linington RG (2015) Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc Natl Sci Acad 112(39):11999–12004CrossRefGoogle Scholar
  36. Liu X, Locasale JW (2017) Metabolomics: a primer. Trends Biochem Sci 42:274–284CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lowe, D (2015) The “Dark Matter” of a compound collection. From http://blogs.sciencemag.org/pipeline/archives/2015/10/20/the-dark-matter-of-a-compound-collection. Accessed 26 Feb 2018
  38. Mahieu N, Patti GJ (2017) Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. Anal Chem 89:10397–10406CrossRefPubMedGoogle Scholar
  39. Maltese F, van der Kooy F, Verpoorte R (2009) Solvent derived artifacts in natural products chemistry. Nat Prod Commun 4(3):447–454PubMedGoogle Scholar
  40. Margueritte L, Markov P, Chiron L, Starck J-P, Vonthron-Sénécheau C, Bourjot M, Delsuc M-A (2018) Automatic differential analysis of NMR experiments in complex samples. Magn Reson Chem 56:1–11CrossRefGoogle Scholar
  41. Martin MJ et al (2013) Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc 135(27):10164–10171CrossRefPubMedGoogle Scholar
  42. Martínez-Diez et al (2014) PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem Pharmacol 88(3):291–302CrossRefPubMedGoogle Scholar
  43. Mohamed A, Nguyen CH, Mamitsuka H (2016) Current status and prospects of computational resources for natural product dereplication: a review. Brief Bioinform 17(2):309–321CrossRefPubMedGoogle Scholar
  44. Molinski TF (2014) All natural: the renaissance of natural products chemistry. Org Lett 16(15):3849–3855CrossRefPubMedGoogle Scholar
  45. Moya-García A, Adeyelu T, Kruger FA, Dawson NL, Lees JG, Overington JP, Orengo C, Ranea JAG (2017) Structural and functional view of polypharmacology. Sci Rep 7:10102.  https://doi.org/10.1038/s41598-017-10012-xCrossRefPubMedPubMedCentralGoogle Scholar
  46. Muegge I, Mukherjee P (2016) Performance of dark chemical matter in high throughput screening. J Med Chem 59:9806–9813CrossRefPubMedGoogle Scholar
  47. National Aeronautics and Space Administration (2018) Dark energy, dark matter. Available from https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy. Accessed 6 Feb 2018
  48. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nicolaou KC (2014) Advancing the drug discovery and development process. Angew Chem Int Ed 53:9128–9140.  https://doi.org/10.1002/anie.201404761CrossRefGoogle Scholar
  50. Nothias L-F, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J, Alexandrov T, Litaudon M, Dorrestein PC (2018) Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod 81:758–767CrossRefPubMedGoogle Scholar
  51. Pera B et al (2013) New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem Biol 8(9):2084–2094CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Sci Acad 114(22):5601–5606CrossRefGoogle Scholar
  53. Robinette SL, Schweiler RB, Schroeder FC, Edison AS (2012) NMR in metabolomics and natural products research: two sides of the same coin. Acc Chem Res 45(2):288–297CrossRefPubMedGoogle Scholar
  54. Rodrigues T, Reker D, Schneider P, Schneider G (2016) Counting on natural products for drug design. Nat Chem 8:531–541CrossRefPubMedGoogle Scholar
  55. Sarker SD, Nahar F (eds) (2012) Natural products in drug discovery, 3rd edn. Humana Press/Springer, New YorkGoogle Scholar
  56. Schulze CJ et al (2013) “Function-first” lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem Biol 20:285–295CrossRefPubMedPubMedCentralGoogle Scholar
  57. Singh SB, Pelaez F (2008) Biodiversity, chemical diversity and drug discovery. In: Petersen F, Amstutz R (eds) Progress in drug research, vol 65; Natural products as drugs, vol I. Birkhäuser Verlag AG, Basel, pp 142–174Google Scholar
  58. Siramshetty V, Preissner R (2018) Drugs as habitable planets in the space of dark chemical matter. Drug Discov Today  https://doi.org/10.1016/j.drudis.2017.07.003 23:481CrossRefPubMedGoogle Scholar
  59. Wakimoto T, Abe I (2012) Labile natural products. Med Chem Commun 3:866–870CrossRefGoogle Scholar
  60. Wassermann AM et al (2015) Dark chemical matter as a promising starting point for drug lead discovery. Nat Chem Biol 11:958–966CrossRefPubMedGoogle Scholar
  61. Wassermann AM, Tudor M, Glick M (2017) Deorphanization strategies for dark chemical matter. Drug Discov Today Technol 23:69–74CrossRefPubMedGoogle Scholar
  62. Wolfender J-L, Marti G, Thomas A, Bertrand S (2015) Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 1382:136–164CrossRefPubMedGoogle Scholar
  63. Wubshet SG, Brighente IMC, Moaddel R, Staerk D (2015) Magnetic ligand fishing as a targeting tool for HPLC-HRMS-SPE- NMR: α-glucosidase inhibitory ligands and alkylresorcinol glycosides from Eugenia catharinae. J Nat Prod 78:2657–2665CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zani CL, Carroll AR (2017) Database for rapid Dereplication of known natural products using Data from MS and fast NMR experiments. J Nat Prod 80:1758–1766CrossRefPubMedGoogle Scholar
  65. Zhang O, Fu Y, Huang C, Zheng C, Wu Z, Zhang W, Yang X, Gong F, Li Y, Chen X, Gao S, Chen X, Li Y, Lu A, Wang Y (2016) New strategy for drug discovery by large-scale association analysis of molecular networks of different species. Sci Rep 6:21872.  https://doi.org/10.1038/srep21872CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhang C, Idelbayev Y, Roberts N, Tao Y, Nannapaneni Y, Duggan BM, Min J, Lin EC, Gerwick EC, Cottrell GW, Gerwick WH (2017) Small molecule accurate recognition technology (SMART) to enhance natural products research. Sci Rep 7:14243.  https://doi.org/10.1038/s41598-017-13923-xCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Chemistry and Natural Products Research CenterUniversity of Costa RicaSan JoseCosta Rica

Personalised recommendations