Advertisement

Design and Optimization of Wind-Battery Systems

  • Anindita Roy
  • Santanu Bandyopadhyay
Chapter

Abstract

This chapter gives a detailed account of the sizing and optimization of an isolated wind-battery system. A procedure is proposed which simulates the minimum battery capacity given the resource and load profiles and generator rating-turbine diameter combination along with other system level constraints. Varying the turbine diameter-generator rating combinations enables to generate a set of feasible design options, known as the design space. The design space of a wind-battery system is identified on a rotor diameter vs. rated power diagram. This forms the core philosophy for sizing the system. The optimum configuration of the stand-alone system is identified on the basis of the minimum cost of energy. Similar results can also be obtained by applying principles of pinch analysis originally designed for optimizing heat exchanger networks. Multiple case studies are included to demonstrate the procedure. It is demonstrated that there are maximum and minimum limits associated with each design variable abiding by which it is possible to supply the demand.

Keywords

System sizing Wind-battery systems Isolated power system design Design space 

References

  1. Bekele, G., & Palm, B. (2010). Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia. Applied Energy, 87(2), 487–495.CrossRefGoogle Scholar
  2. Beyer, H. G., & Degner, T. (1997). Assessing the maximum fuel savings obtainable in simple wind-diesel systems. Solar Energy, 61(1), 5–10.CrossRefGoogle Scholar
  3. Beyer, H. G., & Langer, C. (1996). A method for the identification of configurations of PV/wind hybrid systems for the reliable supply of small loads. Solar Energy, 57(5), 381–391.CrossRefGoogle Scholar
  4. Beyer, H. G., Degner, T., & Gabler, H. (1995). Operational behaviour of wind-diesel systems incorporating short-term storage: An analysis via simulation calculations. Solar Energy, 54(6), 429–439.CrossRefGoogle Scholar
  5. Borowy, B. S., & Salameh, Z. M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system. IEEE Transactions on Energy Conversion, 9(3), 482–488.CrossRefGoogle Scholar
  6. Borowy, B. S., & Salameh, Z. M. (1997). Dynamic response of a stand-alone wind energy conversion system with battery energy storage to a wind gust. IEEE Transactions on Energy Conversion, 12(1), 73-78.CrossRefGoogle Scholar
  7. Celik, A. N. (2003). A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage. Renewable Energy, 28(4), 561–572.MathSciNetCrossRefGoogle Scholar
  8. Chedid, R., & Rahman, S.(1997). Unit sizing and control of hybrid wind-solar power systems. IEEE Transactions on Energy Conversion, 12(1),79-85.CrossRefGoogle Scholar
  9. Collecutt, G. R., & Flay, R. G. J. (1996). The economic optimization of horizontal axis wind turbine design. Journal of Wind Engineering and Industrial Aerodynamics, 61(1), 87–97.CrossRefGoogle Scholar
  10. De, L., & Musgrove, A. R. (1988). The optimization of hybrid energy conversion systems using the dynamic programming model-Rapsody. International Journal of Energy Research, 12(3), 447–457.CrossRefGoogle Scholar
  11. Dunnett, S., Khennas, S., & Piggott, H. (2001). Small wind systems for battery charging – A guide for development workers. Department for International Development.Google Scholar
  12. Ekren, O., & Ekren, B. Y. (2008). Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Applied Energy, 87(11), 1086–1101.CrossRefGoogle Scholar
  13. Ekren O., Ekren B.Y. (2010) Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy, 87(2), 592–598.CrossRefGoogle Scholar
  14. Elhadidy, M. A., & Shaahid, S. M. (1999). Optimal sizing of battery storage for hybrid (wind+diesel) power systems. Renewable Energy, 18(1), 77–86.CrossRefGoogle Scholar
  15. Galanis, N., & Christophides, C. (1990). Technical and economic considerations for the design of optimum wind energy conversion systems. Journal of Wind Engineering and Industrial Aerodynamics, 34(2), 185–196.CrossRefGoogle Scholar
  16. Honkalaskar, V. (2006). Design and development of a small wind turbine. Department of Mechanical Engineering, DD Project Report, IIT Bombay.Google Scholar
  17. Kaldellis, J. K. (2004). Parametric investigation concerning dimensions of a stand-alone wind-power system. Applied Energy, 77(1), 35–50.CrossRefGoogle Scholar
  18. Kaldellis, J. K., Kondili, E., & Filios, A. (2006). Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost. Applied Energy, 83(12), 1384–1403.CrossRefGoogle Scholar
  19. Katti, P. K., & Khedkar, M. K. (2007). Alternative energy facilities based on site matching and generation unit sizing for remote area power supply. Renewable Energy, 32(8), 1346–1362.CrossRefGoogle Scholar
  20. Kellogg, W., Nehrir, M. H., Venkataramanan, G., & Gerez, V. (1998). Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems. IEEE Transactions on Energy Conversion, 13(1), 70–75.CrossRefGoogle Scholar
  21. Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072–1088.CrossRefGoogle Scholar
  22. Manwell, J. F., & McGowan, J. G. (1994). A combined probabilistic/ time series model for wind-diesel system simulation. Solar Energy, 53(6), 481–490.CrossRefGoogle Scholar
  23. Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2002). Wind energy explained: Theory design and application. Chichester: John Wiley.CrossRefGoogle Scholar
  24. Markvart, T. (1996). Sizing of hybrid-photovoltaic-wind energy systems. Solar Energy, 57(4), 227–281.CrossRefGoogle Scholar
  25. Muselli, M., Notton, G., & Louche, L. (1998). Design of Hybrid-photovoltaic power generator, with optimization of energy management. Solar Energy, 65(3), 143–157.CrossRefGoogle Scholar
  26. Nfaoui, H., Buret, J., Sayigh, A. A. M., & Dunn, P. D. (1994). Modelling of a wind/diesel system with battery storage for Tangiers, Morocco. Renewable Energy, 4(2), 155–167.CrossRefGoogle Scholar
  27. Nouni, M. R., Mullick, S. C., & Kandpal, T. C. (2007). Techno-economics of small wind electric generator projects for decentralized power supply in India. Energy Policy, 34(4), 2491–2506.CrossRefGoogle Scholar
  28. Protogeropoulos, C., Brinkworth, B. J., & Marshall, R. H. (1997). Sizing and techno-economical optimization for solar photovoltaic/wind power systems with battery storage. International Journal of Energy Research, 21(6), 465–479.CrossRefGoogle Scholar
  29. Roy, A., Kedare, S. B., & Bandyopadhyay, S. (2009). Application of design space methodology for optimum sizing of wind–battery systems. Applied Energy, 86(12), 2690–2703.CrossRefGoogle Scholar
  30. Rydh, C. J. (1999). Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80(1–2), 21–29.CrossRefGoogle Scholar
  31. Sagrillo, M. (2005). Siting towers and heights for small wind turbines. Wind Letter, 24(10), 1–2.Google Scholar
  32. Sen, R., Kamble, S., & Tippe, P. (2014). Success of small wind power at Aundh, Satara. Akshay Urja, pp 44. Available on http://mnre.gov.in/file-manager/akshay-urja/november-December-2014/EN/44.pdf. Last accessed on 26 Nov 2017.
  33. Shi, J. H., Zhu, X. J., & Cao, G. Y. (2007). Design and techno-economical optimization for stand-alone hybrid power systems with multi-objective evolutionary algorithms. International Journal of Energy Research, 31(3), 315–328.CrossRefGoogle Scholar
  34. Yang, H., Lu, L., & Zhou, W. (2007). A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy, 81(1), 76–84.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anindita Roy
    • 1
  • Santanu Bandyopadhyay
    • 2
  1. 1.Department of Mechanical EngineeringPimpri Chinchwad College of EngineeringPuneIndia
  2. 2.Department of Energy Science & EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations