A Recursive Driving Constraint Approach for Inverse Dynamics Modeling of Flexible Multibody Systems

  • Saeed EbrahimiEmail author
  • Arman Mardani
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 33)


In this chapter, a novel procedure for inverse dynamics modeling of flexible multibody systems using a driving constraints approach in the form of a forward dynamics analysis is presented. The flexible 3RPR parallel manipulator is chosen here as a flexible multibody system with closed kinematic chains to introduce this approach. The equations of motion are derived using the floating frame of reference formulation. Assuming a prescribed trajectory of the end-effector, the generalized coordinates of the rigid manipulator associated with the prismatic and revolute joints are obtained from an inverse kinematics analysis of the manipulator. This solution is further exploited in a forward dynamics analysis of the flexible manipulator to form the required driving constraints for obtaining the approximate values of the actuating forces and torques. Finally, the inverse dynamics analysis of the flexible manipulator is carried out by including some additional driving constraints associated with the generalized elastic coordinates to obtain the high-accuracy approximate values of the actuating forces and torques for tracking the prescribed trajectory by the end-effector. To numerically validate the approach, the obtained actuating forces and torques are applied to the simulated flexible manipulator to check the final trajectory of the end-effector. The results confirm the accuracy of the proposed approach.


Flexible parallel robots 3RPR platform Floating frame formulation Inverse dynamics 


  1. 1.
    Bastos, G., Seifried, R., Brüls, O.: Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody Syst. Dyn. 30(3), 359–376 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lismonde, A., Sonneville, V., Bruls, O.: Inverse dynamics of a flexible 3D robotic arm for a trajectory tracking task. The 4th Joint International Conference on Multibody System Dynamics (IMSD), 29 May-2 June, Montreal, Canada (2016)Google Scholar
  3. 3.
    Rodriguez, G.: Spatial operator approach to flexible manipulator inverse and forward dynamics. International Conference on Robotics and Automation 1990, pp. 845–850 (1990)Google Scholar
  4. 4.
    Ledesma, R., Devasia, S., Bayo, E.: Inverse dynamics of spatial open-chain flexible manipulators with lumped and distributed actuators. J. Field Robot. 11(4), 327–338 (1994)zbMATHGoogle Scholar
  5. 5.
    Mardani, A., Ebrahimi, S.: Computational dynamic modeling and sequential PID controlling of a tendon-based manipulator with highly slender flexible arms. 4th International Conference on Robotics and Mechatronics (ICROM), 26–28 Oct., pp. 542–547, Tehran (2016)Google Scholar
  6. 6.
    Bayo, E., Moulin, H.: An efficient computation of the inverse dynamics of flexible manipulators in the time domain. International Conference on Robotics and Automation 1989, pp. 710–715 (1989)Google Scholar
  7. 7.
    Boyer, F., Khalil, W.: An efficient calculation of flexible manipulator inverse dynamics. Int. J. Robot. Res. 17(3), 282–293 (1998)CrossRefGoogle Scholar
  8. 8.
    Talebi, H.A., Khorasani, K., Patel, R.V.: Neural network based control schemes for flexible-link manipulators: simulations and experiments. Neural Netw. 11(7–8), 1357–1377 (1998)CrossRefGoogle Scholar
  9. 9.
    Su, Z., Khorasani, K.: A neural-network-based controller for a single-link flexible manipulator using the inverse dynamics approach. IEEE Trans. Ind. Electron. 48(6), 1074–1086 (2001)CrossRefGoogle Scholar
  10. 10.
    Rahmani, B., Belkheiri, M.: Adaptive neural network output feedback control for flexible multi-link robotic manipulators. Int. J. Control., pp. 1–35 (2018)Google Scholar
  11. 11.
    Sun, Q., Nahon, M., Sharf, I.: An inverse dynamics algorithm for multiple flexible-link manipulators. J. Vib. Control. 6(4), 557–569 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ledesma, R., Bayo, E.: A Lagrangian approach to the non-causal inverse dynamics of flexible multibody systems: the three-dimensional case. Int. J. Numer. Methods Eng. 37(19), 3343–3361 (1994)CrossRefGoogle Scholar
  13. 13.
    Lismonde, A., Brüls, O., Sonneville, V.: Solving the inverse dynamics of a flexible 3D robot for a trajectory tracking task. International Conference on Methods and Models in Automation and Robotics (MMAR) 2016, pp. 194–199. IEEE (2016)Google Scholar
  14. 14.
    Damaren, C.L.: Approximate inverse dynamics and passive feedback for flexible manipulators with large payloads. IEEE Trans. Robot. Autom. 12(1), 131–138 (1996)CrossRefGoogle Scholar
  15. 15.
    Trautt, T.A., Bayo, E.: Inverse dynamics of flexible manipulators with coulomb friction or backlash and non-zero initial conditions. Dyn. Control. 9(2), 173–195 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Carrera, E., Serna, M.A.: Inverse dynamics of flexible robots. Math. Comput. Simul. 41(5–6), 485–508 (1996)CrossRefGoogle Scholar
  17. 17.
    Staicu, S.: Inverse dynamics of the 3-PRR planar parallel robot. Robot. Auton. Syst. 57(5), 556–563 (2009)CrossRefGoogle Scholar
  18. 18.
    Staicu, S.: Power requirement comparison in the 3-RPR planar parallel robot dynamics. Mech. Mach. Theory. 44(5), 1045–1057 (2009)CrossRefGoogle Scholar
  19. 19.
    Staicu, S.: Inverse dynamics of the spatial 3-RPS parallel robot. Proc. Rom. Acad. A. 13(1), 62–70 (2012)MathSciNetGoogle Scholar
  20. 20.
    Plitea, N., Hesselbach, J., Pisla, D., Raatz, A., Vaida, C., Prodan, B., Dadarlat, R.: Inverse dynamics of a 5-DOF reconfigurable parallel robot. In: 13th World Congress in Mechanism and Machine Science, pp. 19–25. Guanajuato, México (2011)Google Scholar
  21. 21.
    Kordjazi, H., Akbarzadeh, A.: Inverse dynamics of a 3-PRR planar parallel manipulator using natural orthogonal complement. J. Syst. Control Eng. 225, 258–269 (2011)Google Scholar
  22. 22.
    Asada, H., Ma, Z.D., Tokumaru, H.: Inverse dynamics of flexible robot arms: modeling and computation for trajectory control. J. Dyn. Syst. Meas. Control. 112(2), 177–185 (1990)CrossRefGoogle Scholar
  23. 23.
    Zhaocai, D., Yueqing, Y.: Dynamic modeling and inverse dynamic analysis of flexible parallel robots. Int. J. Adv. Robot. Syst. 5(1), 13 (2008)CrossRefGoogle Scholar
  24. 24.
    Brüls, O., Lismonde, A., Sonneville, V.: Implicit finite element formulation of the inverse dynamics of vibrating robots. Proceedings of the 9th European Nonlinear Dynamics Conference (ENOC), June 25–30, Budapest, Hungary (2017)Google Scholar
  25. 25.
    Moberg, S., Hanssen, S.: Inverse dynamics of flexible manipulators. In: 2009 Conference on Multibody Dynamics 2009, pp. 1–20. Warsaw, Poland (2009)Google Scholar
  26. 26.
    Firoozabadi, A.E., Ebrahimi, S., Amirian, G.: Dynamic characteristics of a 3-RPR planar parallel manipulator with flexible intermediate links. Robotica. 33(9), 1909–1925 (2015)CrossRefGoogle Scholar
  27. 27.
    Ebrahimi, S., Eshaghiyeh-Firoozabadi, A.: Dynamic performance evaluation of serial and parallel RPR manipulators with flexible intermediate links. Iran. J. Sci. Technol., Trans. Mech. Eng. 40(3), 169–180 (2016)CrossRefGoogle Scholar
  28. 28.
    Shabana, A.A.: Dynamics of multibody systems. 4th edn. Cambridge University Press. New York, USA (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentYazd UniversityYazdIran

Personalised recommendations