Advertisement

Modeling of Incident Waves Near the Ship’s Hull (Application of Autoregressive Approach in Problems of Simulation of Rough Seas)

  • Alexander B. DegtyarevEmail author
  • Arthur M. Reed
  • Vladimir Mareev
Chapter
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 119)

Abstract

This chapter introduces the basics of the ARMA (Autoregressive Moving Average) model of short-crested wind waves. The model consists of an autoregressive component for temporal dependence and evolution and a two-dimensional moving average component for spatial dependence and propagation. A brief description of the validation of the model is given with special emphasis on the analysis of the dispersion relationship.

Keywords

Autoregressive/moving average model (ARMA) Short-crested waves 

Notes

Acknowledgements

Dr. Degtyarev’s work was supported by RFBR grants N 16-07-00886, 17-29-04288, project of St.Petersburg State University (id 28612502) and US Office of Naval Research Global Visiting Scientist Program under Dr. Woei-Min Lin. Dr. Paul Hess of ONR supported Dr. Reed’s on this effort. This is much appreciated.

References

  1. Belenky, V. (2011) “On Self-Repeating Effect in Reconstruction of Irregular Waves” Chapter 33 of Contemporary Ideas on Ship Stability, Neves, M.A.S., et al. (eds), Springer, ISBN 978-94-007-1481-6 pp. 589–598.Google Scholar
  2. Box, G. E. P., G. M. Jenkins & G. C. Reinsel (2008) Time series analysis: Forecasting and control, 4th Edition. Wiley, xx + 746 p.Google Scholar
  3. Bukhanovsky, A.V., Degtyarev, A.B., Lopatukhin, L.I., Rozhkov, V.A. (1998) “Probabilistic modeling of sea wave climate”. Izvestiya - Atmospheric and Ocean Physics. Vol 34, No 2, pp. 235–239.Google Scholar
  4. Boukhanovsky A., V. Rozhkov & A. Degtyarev (2001) Peculiarities of Computer Simulation and Statistical Representation of Time-Spatial Metocean Fields. In: Computational Science - ICCS, LNCS 2073, Springer, part I, pp. 463–472.Google Scholar
  5. Davidan, I. N., L. I. Lopatuhin & V. A. Rozhkov (1978) Wind sea as a probabilistic hydrodynamic process. Leningrad, Gidrometeoizdat (in Russian).Google Scholar
  6. Degtyarev, A., Boukhanovsky, A. (1995) On the Estimation of the Motion Stability in Real Seas. Proc. Intl Symp. Ship Safety in a Seaway: Stability, Maneuverability, Nonlinear Approach, Kaliningrad, Vol. 2, Paper 8, 10 p.Google Scholar
  7. Degtyarev, A., (2011) “New Approach to Wave Weather Scenarios Modeling” Chapter 34 of Contemporary Ideas on Ship Stability Neves, M.A.S., et al. (eds), Springer, ISBN 978-94-007-1481-6 pp. 599–617.Google Scholar
  8. Degtyarev, A.B., Reed, A.M. (2013) “Synoptic and short-term modeling of ocean waves” Intl. Shipbuilding Progress Vol. 60 pp. 523–553.Google Scholar
  9. Degtyarev, A., Gankevich, I. (2015) “Hydrodynamic pressure computation under real sea surface on basis of autoregressive model of irregular waves”. Physics of Particles and Nuclei Letters, Vol. 12, No. 3, pp. 389–391.CrossRefGoogle Scholar
  10. Gankevich, I., Degtyarev, A. (2018) Simulation of standing and propagating sea waves with three-dimensional ARMA model. In: Velarde M., Tarakanov R., Marchenko A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_18.CrossRefGoogle Scholar
  11. Gurgenidze, A. T. & Y. A. Trapeznikov (1988) Probabilistic model of wind waves. In: Theoretical foundations and methods of calculating wind waves. Leningrad, Gidrometeoizdat, pp. 8–23.Google Scholar
  12. Longuet-Higgins, M. S. (1962) The statistical analysis of a random, moving surface. Phil. Trans. Royal Soc. London. Series A, Mathematical and Physical Sciences, Vol. 249, No. 966, pp. 321–387.MathSciNetCrossRefGoogle Scholar
  13. Maddala, G. S. (1971) Generalized least squares with an estimated variance covariance matrix. Econometrica, Vol. 39, No. 1, pp. 23–33.MathSciNetCrossRefGoogle Scholar
  14. Rosenblatt, M. A (1957) Random model of the sea surface generated by the hurricane. J. Math., No. 6, p. 235–246.Google Scholar
  15. Rozhkov, V. A. & Y. A. Trapeznikov (1990) Probabilistic models of oceanographic processes. Leningrad, Gidrometeoizdat (in Russian).Google Scholar
  16. Spanos, P. D. (1983) ARMA Algorithms for Ocean Wave Modeling. J. Energy Resources Technology, Trans. ASME, Vol. 105 pp. 300–309.CrossRefGoogle Scholar
  17. St. Denis, M. & W. J. Pierson (1953) On the motion of ships in confused seas. Trans. SNAME, Vol. 61, pp. 280–354.Google Scholar
  18. Sveshnikov A. A. (1959) Determination of the probability characteristics of three-dimensional sea waves. Math. Akad. Mech. and Engin., No. 3, pp. 32–41.Google Scholar
  19. Walker, G. (1931) On Periodicity in Series of Related Term. Proc. Royal Soc. London, Ser. A, Vol. 131, pp. 518–532.CrossRefGoogle Scholar
  20. Yule G. U. (1927) On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers. Phil. Trans. Royal Soc. London, Ser. A, Vol. 226, pp. 267–298.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander B. Degtyarev
    • 1
    Email author
  • Arthur M. Reed
    • 2
  • Vladimir Mareev
    • 1
  1. 1.St. Petersburg State UniversitySaint PetersburgRussia
  2. 2.David Taylor Model Basin (NSWCCD)West BethesdaUSA

Personalised recommendations