Modelling Local Search in a Knowledge Base System

  • Tu-San PhamEmail author
  • Jo Devriendt
  • Patrick De Causmaecker
Part of the AIRO Springer Series book series (AIROSS, volume 1)


In this paper we present how the basic building blocks of local search approaches—problem constraints, neighbourhood moves, objective function, move evaluations—can be modelled declaratively using FO (\(\cdot \)), an extension of first order logic. We extend the Knowledge Base System IDP with three built-in local search heuristics, namely first improvement, best improvement and tabu search, which take those building block specifications as input and execute local search accordingly. To demonstrate the framework, three neighbourhood moves for three different problems are modelled and tested.


Local search Metaheuristics Knowledge base system 


  1. 1.
    Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: Localsolver 1. x: a black-box local-search solver for 0–1 programming. 4OR: Q. J. Op. Res. 9(3), 299–316 (2011)Google Scholar
  2. 2.
    Bruynooghe, M., Blockeel, H., Bogaerts, B., De Cat, B., De Pooter, S., Jansen, J., Labarre, A., Ramon, J., Denecker, M., Verwer, S.: Predicate logic as a modeling language: modeling and solving some machine learning and data mining problems with idp3. Theory. Pract. L. Program. 15(6), 783–817 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cramer, M., Van Hertum, P., Ambrossio, D.A., Denecker, M.: Modelling delegation and revocation schemes in IDP. arXiv:1405.1584 (2014)
  4. 4.
    De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modelling language: the IDP system (2016).
  5. 5.
    De Cat, B., Bogaerts, B., Devriendt, J., Denecker, M.: Model expansion in the presence of function symbols using constraint programming. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, Herndon, VA, USA, 4–6 November 2013, pp. 1068–1075. IEEE Computer Society (2013).
  6. 6.
    De Cat, B.: Separating knowledge from computation: An FO(\(\cdot \)) knowledge base system and its model expansion inference. Ph.D. thesis. KU Leuven, Leuven, Belgium (2014)Google Scholar
  7. 7.
    Denecker, M., Vennekens, J.: Building a knowledge base system for an integration of logic programming and classical logic. In: M. García de la Banda, E. Pontelli (eds.) ICLP, LNCS, vol. 5366, pp. 71–76. Springer (2008).
  8. 8.
    Devriendt, J.: Exploiting symmetry in model expansion for predicate and propositional logic. Ph.D. thesis, Informatics Section, Department of Computer Science, Faculty of Engineering Science (2017). Denecker, Marc (supervisor)
  9. 9.
    Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization, pp. 3261–3362. Springer (2013)Google Scholar
  10. 10.
    Michael trick’s operations research page. (2017)
  11. 11.
    Michel, L., Van Hentenryck, P.: The Comet programming language and system. In: P. van Beek (ed.) CP, LNCS, vol. 3709, pp. 881–881. Springer (2005)Google Scholar
  12. 12.
    OscaR Team: OscaR: Scala in OR (2012).
  13. 13.
  14. 14.
    Van Hertum, P., Dasseville, I., Janssens, G., Denecker, M.: The KB paradigm and its application to interactive configuration. Theory. Pract. L. Program. 17(1), 91–117 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vlaeminck, H., Vennekens, J., Denecker, M.: A logical framework for configuration software. In: Proceedings of the 11th ACM SIGPLAN conference on Principles and practice of declarative programming, pp. 141–148. ACM (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tu-San Pham
    • 1
    Email author
  • Jo Devriendt
    • 1
  • Patrick De Causmaecker
    • 1
  1. 1.KU LeuvenLeuvenBelgium

Personalised recommendations