Advertisement

The Challenge of the Vascularization of Regenerated Tissues

  • Michela Fratini
Chapter
Part of the Fundamental Biomedical Technologies book series (FBMT)

Abstract

Tissue engineering (TE) technology combines different aspects of medicine, biology, and engineering to generate, repair, or replace human tissues. In particular, the bone TE approach may be used to induce new functional bone regeneration via the synergistic combination of implanted porous ceramic scaffold with bone marrow stromal cells (BMSC) in vivo. The efficiency of an artificially implanted construct depends on the timely delivery and exchange of nutrients from blood vessels to the BMSC and the contemporary removal of the metabolism waste products. Therefore, the control of the angiogenesis of the microvascular network with proper spatial organization is a key step to obtain tissue regeneration and repair (Carano and Filvaroff, Drug Discov Today 8:980–989, 2003). In this review, we discuss the fundamentals of bone tissue engineering, highlighting the most recent advances in the understanding of the relation between bone formation and vascularization.

Keywords

X-ray phase contrast tomography Tissue Engineering Vascularization Bone marrow stromal cell 

References

  1. 1.
    Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989CrossRefGoogle Scholar
  2. 2.
    Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRefGoogle Scholar
  3. 3.
    Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22:81–91CrossRefGoogle Scholar
  4. 4.
    Quarto R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. NEJM 344:385–386CrossRefGoogle Scholar
  5. 5.
    Francis ME, Uriel S, Brey EM (2008) Endothelial cell–matrix interactions in neovascularization. Tissue Eng Part B Rev 14(1):19–32CrossRefGoogle Scholar
  6. 6.
    Francis-Sedlak ME, Moya ML, Huang JJ, Lucas SA, Chandrasekharan N, Larson JC, Cheng MH, Brey EM (2010) Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res 80(1):3–9CrossRefGoogle Scholar
  7. 7.
    Fratini M, Bukreeva I, Campi G, Brun F, Tromba G, Modregger P et al (2015) Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord. Sci Rep 5:8514CrossRefGoogle Scholar
  8. 8.
    Cedola A, Bravin A, Bukreeva I, Fratini M, Pacureanu A, Mittone A, Massimi L, Cloetens P, Coan P, Campi G, Spanò R, Brun F, Grigoryev V, Petrosino V, Venturi C, Mastrogiacomo M, Kerlero De Rosbo N, Uccelli A (2017) X-ray phase contrast tomography reveals early vascular alterations and neuronal loss in a multiple sclerosis model. Sci Rep 7:5890CrossRefGoogle Scholar
  9. 9.
    Bukrreva I et al (2015) High-resolution X-ray techniques as new tool to investigate the 3D vascularization of engineered-bone tissue. Front Bioeng Biotechnol 3:133Google Scholar
  10. 10.
    Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114CrossRefGoogle Scholar
  11. 11.
    Das A, Botchwey E (2011) Evaluation of angiogenesis and osteogenesis. Tissue Eng Part B Rev 17(6):403–414CrossRefGoogle Scholar
  12. 12.
    Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86-A(7):1541–1558CrossRefGoogle Scholar
  13. 13.
    Upputuri PK et al (2015) Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed Res Int 2015:783983CrossRefGoogle Scholar
  14. 14.
    Barbetta A, Bedini R, Pecci R, Dentini M (2012) Role of X-ray microtomography in tissue engineering. Ann Ist Super Sanita 48:10–18PubMedGoogle Scholar
  15. 15.
    Langer M, Prisby R, Peter Z, Guignandon A, Lafage-Proust MH, Peyrin F (2011) Simultaneous 3D imaging of bone and microstructure in a rat model. IEEE Trans Nucl Sci 58:139–145CrossRefGoogle Scholar
  16. 16.
    Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M (2017) Synchrotron phase tomography: an emerging imaging method for microvessel detection in engineered bone of craniofacial districts. Front Physiol 8:769CrossRefGoogle Scholar
  17. 17.
    Fei J, Peyrin F, Malaval L, Vico L, Lafage-Proust MH (2010) Imaging and quantitative assessment of long bone vascularization in the adult rat using microcomputed tomography. Anat Rec 293:215–224CrossRefGoogle Scholar
  18. 18.
    Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre clinical applications towards clinics. Phys Med Biol 58:R1–R35CrossRefGoogle Scholar
  19. 19.
    Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384(6607):335CrossRefGoogle Scholar
  20. 20.
    Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206(1):33–40CrossRefGoogle Scholar
  21. 21.
    Beltran MA, Paganin DM, Uesugi K, Kitchen MJ (2010) 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance. Opt Express 18(7):6423–6436CrossRefGoogle Scholar
  22. 22.
    Campi G, Fratini M, Bukreeva I, Ciasca G, Burghammer M, Brun F, Tromba G, Mastrogiacomo M, Cedola A (2015) Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater 23:309–316CrossRefGoogle Scholar
  23. 23.
    Albertini G, Giuliani A, Komlev V, Moroncini F, Pugnaloni A, Pennesi G et al (2009) Organization of extracellular matrix fibers within polyglycolic acid-polylactic acid scaffolds analyzed using X-ray synchrotron-radiation phase-contrast micro computed tomography. Tissue Eng C Methods 15:403–411CrossRefGoogle Scholar
  24. 24.
    Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F et al (2013) Three years after transplants in human mandibles, histological and in-line HT revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Trans Med 2:316–324CrossRefGoogle Scholar
  25. 25.
    Cedola A, Campi G, Pelliccia D, Bukreeva I, Fratini M, Burghammer M, ... & Sodini N (2013). Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys Med Biol 59(1):189CrossRefGoogle Scholar
  26. 26.
    Mittone A, Ivanishko Y, Kovalev S, Lisutina P, Lotoshnikov M, Tkachev S, Tkacheva M, Crippa L, Dmitriev V, Bravin A (2018) High resolution hard X-ray 3D mapping of a Macaca fascicularis eye: a feasibility study without contrast agents. Phys Med 51:7–12CrossRefGoogle Scholar
  27. 27.
    Lang S, Müller B, Dominietto MD, Cattin PC, Zanette I, Weitkamp T et al (2012) Three-dimensional quantification of capillary networks in healthy and cancerous tissues of two mice. Microvasc Res 84(3):314–322CrossRefGoogle Scholar
  28. 28.
    Ciasca G, Sassun TE, Minelli E, Antonelli M, Papi M, Santoro A, Giangaspero F, Delfini R, De Spirito M (2016) Nano-mechanical signature of brain tumours. Nanoscale 8(47):19629–19643CrossRefGoogle Scholar
  29. 29.
    Müller B, Beckmann F, Huser M, Maspero F, Szekely G, Ruffieux K et al (2002) Nondestructive three-dimensional evaluation of a polymer sponge by microtomography using synchrotron radiation. Biomol Eng 19(2):73–78CrossRefGoogle Scholar
  30. 30.
    Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomol Eng 2(1):315–337CrossRefGoogle Scholar
  31. 31.
    Massimi L et al (2016) Characterization of mouse spinal cord vascular network by means of synchrotron radiation X-ray phase contrast tomography. Phys Med 32:1779–1784CrossRefGoogle Scholar
  32. 32.
    Atwood RC, Lee PD, Konerding MA, Rockett P, Mitchell CA (2010) Quantitation of microcomputed tomography-imaged ocular microvasculature. Microcirculation 17(1):59–68CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Michela Fratini
    • 1
    • 2
  1. 1.Institute of Nanotechnology, CNRRomeItaly
  2. 2.Santa Lucia FoundationRomeItaly

Personalised recommendations